matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperkleinsche vierergruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - kleinsche vierergruppe
kleinsche vierergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kleinsche vierergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:55 Mo 28.04.2014
Autor: mimo1

Aufgabe
Betr. folg. Untergruppe der [mm] S_4: [/mm]
[mm] S'_3:=\{\sigma \in S_4; \sigma(4)=4\}, V_4:=<(1,2)(3,4),(1,3)(2,4)> [/mm]

i) bestimme alle elemente von [mm] V_4 [/mm]
ii) zeige [mm] V_4 [/mm] ist Normalteiler.
iii) Es gilt [mm] S'_3\cong S_3 [/mm]
iv) Zeige: es gelten [mm] S_4=S'_3V_4 [/mm] und [mm] S_4/V_4 \cong S_3 [/mm]

zu i) [mm] V_4={id, (1,2)(3,4),(1,3)(2,4),(1,4)(2,3)} [/mm]

zuii) da [mm] V_4 [/mm] produkt zweier Transposition dann gilt [mm] \sigma= \tau_i \circ \tau_j [/mm]
und erhalte [mm] \signum \circ V_4 \circ \sigma^{-1}= \tau_i \circ \tau_j \circ V_4 \tau_j^{-1} \circ \tau_i^{-1} [/mm]
[mm] \Rightarrow [/mm] z.z [mm] \tau_j \circ V_4 \tau_j^{-1}=V_4 [/mm]
[mm] \tau_j \circ [/mm] (ab)(cd) [mm] \tau_j^{-1}=\tau_j \circ [/mm] (ab) [mm] \tau_j^{-1} \circ \tau_j \circ [/mm] (cd) [mm] \tau_j^{-1}=(\tau_j(a),(\tau_j(b))(\tau_j(c)\tau_j(d)) [/mm]

habe ich es dann bewiesen dass [mm] V_4 [/mm] NT ist?

zu iii) da fängt schon das problem an das oben def. [mm] \sigma \in S_4 [/mm] mit [mm] \sigma(4)=4, [/mm] wa ist mit [mm] \sigma(4)=4 [/mm] gemeint? heißt das das es ein 4-zykel ist?

zu iv) habe ich leider keine idee.

ist es bis jetzt richtig?
ich hoffe ihr könnt mir dabei helfen.

        
Bezug
kleinsche vierergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:47 Di 29.04.2014
Autor: wieschoo

Guten abend,
> Betr. folg. Untergruppe der [mm]S_4:[/mm]
> [mm]S'_3:=\{\sigma \in S_4; \sigma(4)=4\}, V_4:=<(1,2)(3,4),(1,3)(2,4)>[/mm]

>

> i) bestimme alle elemente von [mm]V_4[/mm]
> ii) zeige [mm]V_4[/mm] ist Normalteiler.
> iii) Es gilt [mm]S'_3\cong S_3[/mm]
> iv) Zeige: es gelten
> [mm]S_4=S'_3V_4[/mm] und [mm]S_4/V_4 \cong S_3[/mm]
> zu i) [mm]V_4={id, (1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}[/mm]

genau es sind alle Elemente von diesem Typ.
>

> zuii) da [mm]V_4[/mm] produkt zweier Transposition dann gilt [mm]\sigma= \tau_i \circ \tau_j[/mm]

Ein Element aus V4 ist ein Produkt disjunkter Zykeln.

> und erhalte [mm]\signum \circ V_4 \circ \sigma^{-1}= \tau_i \circ \tau_j \circ V_4 \tau_j^{-1} \circ \tau_i^{-1}[/mm]

>

> [mm]\Rightarrow[/mm] z.z [mm]\tau_j \circ V_4 \tau_j^{-1}=V_4[/mm]
> [mm]\tau_j \circ[/mm]
> (ab)(cd) [mm]\tau_j^{-1}=\tau_j \circ[/mm] (ab) [mm]\tau_j^{-1} \circ \tau_j \circ[/mm]
> (cd)
> [mm]\tau_j^{-1}=(\tau_j(a),(\tau_j(b))(\tau_j(c)\tau_j(d))[/mm]

>

> habe ich es dann bewiesen dass [mm]V_4[/mm] NT ist?

Die Darstellung der Rechnung ist leider etwas durcheinander gekommen. Aber du hast den richtigen Weg! Du musst nur noch begründen warum das Ergebnis in V4 liegt.
>

> zu iii) da fängt schon das problem an das oben def. [mm]\sigma \in S_4[/mm]
> mit [mm]\sigma(4)=4,[/mm] wa ist mit [mm]\sigma(4)=4[/mm] gemeint? heißt das
> das es ein 4-zykel ist?

Das soll heißen, dass in S3' alle Elemente liegen, die die 4 nicht permutieren wie (132)
>

> zu iv) habe ich leider keine idee.

Bei der letzten Aussage geht es mit Theorie. Ich gehe aber davon aus, dass man es per Hand nachrechnen soll. Wie sehen denn die Elemente in S3'V4 und S4/V4 aus?
>

> ist es bis jetzt richtig?
> ich hoffe ihr könnt mir dabei helfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]