matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriekleiner Satz von Fermat
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - kleiner Satz von Fermat
kleiner Satz von Fermat < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kleiner Satz von Fermat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 Fr 04.09.2009
Autor: ein_weltengel

Aufgabe
1. Zeigen Sie mit Hilfe des kleinen Satzes von Fermat, dass 9 keine Primzahl ist.

2. Berechnen Sie [mm] 1764^{2013} [/mm] mod 2011.

1.
Der Satz lautet ja:
Sei p eine Primzahl. Für jede Zahl x, die teilerfremd zu p ist gilt:
[mm] x^{p-1} [/mm] = 1 (mod p)

D.h. ich schaue mir die Liste aller teilerfremden Zahlen von 9 an: 1, 2, 4, 5, 7, 8 und fange an zu rechnen:

[mm] 1^{8} [/mm] = 1 (mod 9)
[mm] 2^{8} [/mm] = 4 (mod 9), denn 28 * 9 = 252, 4 dazu addiert, gibt [mm] 2^{8} [/mm]
Somit habe ich gezeigt, dass 9 keine Primzahl ist.

Stimmt das so?

2. Hierfür bräuchte ich mal ein paar Stichwörter wie ich das gelöst bekomme.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
kleiner Satz von Fermat: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Fr 04.09.2009
Autor: zetamy

Hallo,

> 1. Zeigen Sie mit Hilfe des kleinen Satzes von Fermat, dass
> 9 keine Primzahl ist.
>  
> 2. Berechnen Sie [mm]1764^{2013}[/mm] mod 2011.
>  1.
>  Der Satz lautet ja:
>  Sei p eine Primzahl. Für jede Zahl x, die teilerfremd zu
> p ist gilt:
>  [mm]x^{p-1}[/mm] = 1 (mod p)
>  
> D.h. ich schaue mir die Liste aller teilerfremden Zahlen
> von 9 an: 1, 2, 4, 5, 7, 8 und fange an zu rechnen:
>  
> [mm]1^{8}[/mm] = 1 (mod 9)
>  [mm]2^{8}[/mm] = 4 (mod 9), denn 28 * 9 = 252, 4 dazu addiert, gibt
> [mm]2^{8}[/mm]
> Somit habe ich gezeigt, dass 9 keine Primzahl ist.
>  
> Stimmt das so?

Siehe Felix unten.

> 2. Hierfür bräuchte ich mal ein paar Stichwörter wie ich
> das gelöst bekomme.

2011 ist eine Primzahl, also gilt nach dem kleinen Satz von Fermat [mm] $1764^{2011-1} [/mm] = [mm] 1764^{2010}=1 \mod [/mm] 2011$. Damit und mit den Potenzgesetzen lässt sich [mm] $1764^{2013}$ [/mm] berechnen.

Bezug
        
Bezug
kleiner Satz von Fermat: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Fr 04.09.2009
Autor: felixf

Hallo!

> 1. Zeigen Sie mit Hilfe des kleinen Satzes von Fermat, dass
> 9 keine Primzahl ist.
>  
>  1.
>  Der Satz lautet ja:
>  Sei p eine Primzahl. Für jede Zahl x, die teilerfremd zu
> p ist gilt:
>  [mm]x^{p-1}[/mm] = 1 (mod p)
>  
> D.h. ich schaue mir die Liste aller teilerfremden Zahlen
> von 9 an: 1, 2, 4, 5, 7, 8 und fange an zu rechnen:

Hier benutzt du doch schon, dass $9$ keine Primzahl ist. Wenn 9 eine Primzahl waer, dann waer jede Zahl in [mm] $\{ 1, 2, 3, \dots, 8 \}$ [/mm] teilerfremd zu 9, und du koenntest z.B. auch 3 nehmen. Und [mm] $3^8$ [/mm] ist ganz sicher durch 9 teilbar, womit [mm] $3^8 \equiv [/mm] 0 [mm] \not\equiv [/mm] 1 [mm] \pmod{9}$ [/mm] ist. Da braucht man nichtmals wirklich rechnen, was [mm] $3^8$ [/mm] eigentlich ist :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]