kgV von < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:00 Mi 18.05.2011 | Autor: | clemenum |
Aufgabe | Man zeige: $kgV(kgV(a,b),c)=kgV(a,b,c)$ (mit a,b,c [mm] $\neq [/mm] 0$) |
Mein Beweis(ansatz):
Es sei vorausgesetzt, dass $kgV(a,b,c)= [mm] k\cdot [/mm] kgV(a,b)$ für ein [mm] $k\in \mathbb{Z}$ [/mm]
Setze $kgV(a,b)=:d$
Damit bleibt nur noch zu zeigen, dass $kgV(d,c)=kd $ (für ein [mm] $k\in \mathbb{Z}$) [/mm] gilt, was ja sofort aus der Definition des kgV folgt! q.e.d.
Ist das wirklich so kurz zu beweisen oder übersehe ich hier wesentliches?
|
|
|
|
> Man zeige: [mm]kgV(kgV(a,b),c)=kgV(a,b,c)[/mm] (mit a,b,c [mm]\neq 0[/mm])
>
> Mein Beweis(ansatz):
> Es sei vorausgesetzt, dass [mm]kgV(a,b,c)= k\cdot kgV(a,b)[/mm] für
> ein [mm]k\in \mathbb{Z}[/mm]
> Setze [mm]kgV(a,b)=:d[/mm]
> Damit bleibt nur noch zu zeigen, dass [mm]kgV(d,c)=kd[/mm] (für ein
> [mm]k\in \mathbb{Z}[/mm]) gilt, was ja sofort aus der Definition des
> kgV folgt! q.e.d.
>
> Ist das wirklich so kurz zu beweisen oder übersehe ich
> hier wesentliches?
Ich denke auch nicht, dass man so schnell fertig da wird.
Du hattest kgV(a,b)=:d. Ich würde noch kgV(kgV(a,b),c)=kgV(d,c)=:e vorschlagen.
Dann a|d und d|e => a|e. Analog b|d und d|e => b|e. Damit ist e ein Vielfaches von a,b,c
Jetzt musst du noch zeigen:
"Sei f ein weiteres beliebiges Vielfache von d,c dann ist f ein Vielfaches von e."
|
|
|
|
|
Erstmal, dankeschön für de Antwort!
Ich würde so argumentieren:
Es gibt ja voraussetzungsgemäß kein kleineres Vielfache von d,c als e. Es gilt also d,c|e. Wenn jetzt noch ein weiteres Vielfache f dazukommt, gilt insgesamt d,c| e und d,c|f, also insgesamt e|f, da sonst die Minimalität von e bezügl. d,c verletzt wäre...
(Letzte) Frage: Ist meine Argumentation korrekt oder sind dies Zirkelschlüsse?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:24 Mi 18.05.2011 | Autor: | wieschoo |
Bei deiner speziellen Argumentation bin ich mir auch nicht mehr sicher. Vielleicht jemand anderes?
So würde ich es machen:
Sei f ein weiteres beliebiges Vielfache von a,b,c. Dann ist es inbes ein Vielfaches von a,b also ein Vielfaches (oder Vielfache?) von d. Außerdem ist f ein gemeinsames Vielfache von d und c also ein Vielfache(s) von e.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Fr 20.05.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|