matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenkern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - kern
kern < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Di 30.11.2010
Autor: Mathe-Lily

Aufgabe
Sei [mm] \IR [/mm] [X] der [mm] \IR-Vektorraum [/mm] der Polynome in einer Variablen X mit Koeffizienten in [mm] \IR. [/mm] Wir betrachten die Abbildung
[mm] \bruch{d}{dx} [/mm] : [mm] \IR [/mm] [X] [mm] \to \IR [/mm] [X] , P = [mm] \summe_{i=0}^{deg P} a_{i} X^{i} \mapsto \summe_{i=1}^{deg P} [/mm] i [mm] a_{i} X^{i-1}. [/mm]
Zeigen Sie, dass [mm] \bruch{d}{dx} [/mm] : [mm] \IR [/mm] [X] [mm] \to \IR [/mm] [X] surjektiv aber nicht injektiv ist. Berechnen Sie ker [mm] \bruch{d}{dx}. [/mm]

Hallo!
Ich bin ein bisschen verwirrt.
Bisher dachte ich, dass man den Kern nur von Matrizen bilden kann. Da macht man das doch mit einem Gleichungssystem. Aber so etwas kann man hier doch nicht machen, oder?
Und zu injektiv... da brauch man ein Gegenbeispiel, oder? Aber wie findet man da eines heraus?
Zu surjektiv... da glit doch
[mm] \forall [/mm] w [mm] \in \IR [/mm] [X] [mm] \exists [/mm] v [mm] \in \IR [/mm] [X]: [mm] \bruch{d}{dx} [/mm] (v) = w ?
Was bringt mir das hier?
Ich würde mich über eine Hilfe freuen! Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
kern: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Di 30.11.2010
Autor: schotti

der kern einer linearen abbildung ist die menge, die auf 0 abgebildet wird. (dabei spielt es natürlich keine rolle, ob die lineare abbildung durch eine matrix oder sonstwie dargestellt ist.)

die "ableitungs-abbildung" ist nicht injektiv, weil mehrere poynome die gleiche ableitung haben können. wodurch sich polynome mit gleicher ableitung noch unterscheiden können, das weisst du, seit du bei der unbestimmten integration gelernt hast, immer noch so eine blöde integrationskonstante hinzu zu addieren. gleich gut ist natürlich, wenn du zeigst, dass der kern der abbildung nicht leer ist. welche polynome werden also zum 0-polynom?

und für die surjektivität schreibst du dir einfach ein beliegiges, allgemeines polynom hin und bedenkst, dass sein "stammpolynom" auch in R[X] liegt. ist so ein fall, wo man auch mal "trivial" aufs übungsblatt schreiben darf...

Bezug
                
Bezug
kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Di 30.11.2010
Autor: Mathe-Lily

Danke, das mit dem injektiv hab ich jetzt gecheckt.

Aber beim Kern habe ich noch eine Frage: Es wäre mir klar, wenn ich einen Vektor (x,y,z), der auf (x+1,y-z,x+2y) oder so was abgebildet würde, aber hier habe ich ja nichts dergleichen!

Und zur Surjektivität... vllt steh ich gerade einfach auf dem Schlauch, aber ich blicks immer noch nicht!

Bezug
                        
Bezug
kern: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Di 30.11.2010
Autor: wieschoo


> Danke, das mit dem injektiv hab ich jetzt gecheckt.
>  
> Aber beim Kern habe ich noch eine Frage: Es wäre mir klar,
> wenn ich einen Vektor (x,y,z), der auf (x+1,y-z,x+2y) oder
> so was abgebildet würde, aber hier habe ich ja nichts
> dergleichen!

Welche Polynome werden auf Null abgebildet. Anders gefragt welche Polynome werden Null beim Ableiten?

>  
> Und zur Surjektivität... vllt steh ich gerade einfach auf
> dem Schlauch, aber ich blicks immer noch nicht!

f:U-> V ist Surjektiv bedeutet doch, dass für jedes Element v aus V ein Element u aus U mit f(u)=v existiert.
Gib die ein beliebiges Polynom vor. Am Beispiel [mm]2x[/mm]. Man hat zu zeigen, dass es ein Polynom gibt, welches durch die Abbildung [mm] \bruch{d}{dx} [/mm] auf [mm]2x[/mm] abgebildet wird. Wie zum Beispiel [mm]x^2[/mm]. Es würde also reichen eine Abbildungsvorschrift anzugeben die ein solches Polynom baut. schotti hat dich mit der Stammfunktion doch schon darauf hingestupst.
[mm]\phi : R[X] \to R[X][/mm] mit [mm]\sum_{i=0}^n a_iX^i\mapsto \sum_{i=0}^n }\frac{1}{i+1}a_i*x^{i+1}[/mm] gibt dir ein solches Polynom.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]