matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenkeine Konvention?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - keine Konvention?
keine Konvention? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

keine Konvention?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Di 25.03.2008
Autor: barsch

Hallo,

ich bin am Verzweifeln. Folgendes: Ich beschäftige mich gerade mit Basiswechsel. Und da ich mein Skript nicht so gut finde, habe ich zusätzlich noch Lineare Algebra von Gerd Fischer vor mir liegen und ein Skript einer anderen Uni. Drei Quellen und drei verschiedene Definitionen,.

Voraussetzung in allen 3 Fällen:

Seien V,W zwei endlich dimensionale K-VR und sei

[mm] Hom_K(V,W):=\{f:V\to\W|f ist K-linear\} [/mm]

Sei dim [mm] V_K=n [/mm] und dim [mm] W_K=m. [/mm] Wir wählen eine
Basis B = [mm] (v_1, [/mm] . . . , [mm] v_n) [/mm] von V und eine Basis C = [mm] (w_1, [/mm] . . . [mm] ,w_m) [/mm] von W.

1. Skript der anderen Uni:

Dann
ordnen wir jedem [mm] f\in{HomK(V,W)} [/mm] eine von B und C abhängige Matrix
[mm] \red{M^C_B\inM_{m×n}(K)}, [/mm] genannt Darstellungsmatrix , wie folgt zu:
Sei für j = 1, . . . , n
[mm] f(v_j) [/mm] = [mm] a_{1j}w_1 [/mm] + [mm] a_{2j}w_2 [/mm] + · · · + [mm] a_{mj}w_m [/mm]

2. Fischer:

Im Fischer wird genau dieser Sachverhalt als [mm] \red{M^B_C\inM_{m×n}(K)} [/mm] bezeichnet, also B und C vertauscht.

3. Mein Skript:

Hier wird genau dieser Sachverhalt M(f;B,C) bezeichnet.

Meine Frage: Gibt es da keine Konvention? Den 3. Fall kann man ja akzeptieren, aber Fall 1 und 2 unterscheiden sich ja, indem es in 1 heißt [mm] \red{M^C_B\inM_{m×n}(K)} [/mm] und in 2 [mm] \red{M^B_C\inM_{m×n}(K)} [/mm] . Und beide Male ist derselbe Sachverhalt gemeint.

Also schließe ich daraus, dass es einfach Definitionssache ist, wie es letztendlich bezeichnet wird?

MfG barsch

        
Bezug
keine Konvention?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Di 25.03.2008
Autor: pelzig

Kein Grund zu verzweifeln. Wie du offensichtlich bemerkt hast, gibt es verschiedene Symbole für die Darstellungsmatrizen linearer Abbildungen bzgl. bestimmter Basen. Dafür gibt es einfach keine einheitliche Konvention - entweder es wird schon aus dem Zusammenhang klar oder du musst dir halt die entsprechende Definition ansehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]