matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungkarten ziehen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - karten ziehen
karten ziehen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

karten ziehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Mi 05.09.2007
Autor: der_puma

hallo,

aus einem skatkartenspiel darf man 10 mal hintereinander eine karte ziegen , wie hoch ist die wahrscheinlichkeit dass man alle 4 buben zieht ?

also meine ansätze wären
4/32*3/32*2/31*1/30
am anfang ist die wahrshcienlichkeit 1/8 groß dass man einen buben zieht und immer so weiter... nur kann das ja nich stimmen weilman die buben ja nich hintereinader gleich ziehen muss... aber wie geht das richtigf ??????

gruß

        
Bezug
karten ziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Mi 05.09.2007
Autor: Somebody


> hallo,
>  
> aus einem skatkartenspiel darf man 10 mal hintereinander
> eine karte ziehen,

Ohne Zurücklegen? - Ich nehme dies einmal wie selbstverständlich an.

> wie hoch ist die wahrscheinlichkeit
> dass man alle 4 buben zieht ?
>  
> also meine ansätze wären
> 4/32*3/32*2/31*1/30
>  am anfang ist die wahrshcienlichkeit 1/8 groß dass man
> einen buben zieht und immer so weiter... nur kann das ja
> nich stimmen weilman die buben ja nich hintereinader gleich
> ziehen muss...

Die Reihenfolge braucht man bei dieser Fragestellung nicht zu berücksichtigen.

> aber wie geht das richtigf ??????

Das gleichzeitige (ungeordnete) Ziehen von 10 Karten aus 32 (d.h. die Wahl einer 10-elementigen Teilmenge aus einer 32-elementigen Menge) ist ein Laplace-Experiment: jede 10-elementige Teilmenge der 32 Karten ist gleich wahrscheinlich. Da sich aus einer $n$-elementigen Menge $k$ Elemente auf [mm] $\binom{n}{k}$ [/mm] Arten auswählen lassen, ist die gesuchte Wahrscheinlichkeit (als Verhältnis von günstigen zu möglichen Fällen) somit

[mm]\mathrm{P}(\text{alle 4 Buben})=\frac{\binom{4}{4}\cdot\binom{32-4}{10-4}}{\binom{32}{10}}[/mm]

Die Überlegung bei der Berechnung der günstigen Fälle ist einfach die: man kann 4 Buben auf [mm] $\binom{4}{4}$ [/mm] Arten aus 4 Buben auswählen und die restlichen $10-4$ Karten aus den noch verfügbaren anderen $32-4$ Karten auf [mm] $\binom{32-4}{10-4}$ [/mm] Arten.

[mm] $\binom{4}{4}$ [/mm] ist natürlich $1$, könnte also weggelassen werden: ich hab's mehr der formalen Vollständigkeit halber hingeschrieben...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]