matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräumek-Algebra und Lie-Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - k-Algebra und Lie-Algebra
k-Algebra und Lie-Algebra < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

k-Algebra und Lie-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:14 Mi 29.10.2008
Autor: blinktea

Aufgabe
Welche der folgenden k-Vektorräume sind k-Algebren und welche sind Lie-Algebren.
a) symmetrische 2x2-Matrizen über k.
b)schiefsymmetrische 3x3-Matrizen über k.
c) [mm] \pmat{ \IR & \IC \\ 0 & \IC } [/mm] für [mm] k=\IR. [/mm]
[mm] d)\pmat{ \IC & \IC \\ 0 & \IC } [/mm] für [mm] k=\IC. [/mm]
(Dabei sind alle Algebren mit der natürlichen Matrizenmultiplikation versehen, alle Lie-Algebren mit der Lie-Klammer [a,b]:= ab-ba.)

für eine Lie-Algebra gilt doch folgendes:
[x,x] = 0
[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0
und für eine k-Algebra gilt doch, dass es immer eine bilineare verknüpfung AxA [mm] \to [/mm] A gibt, oder?
aber wie zeig ich das genau?
Eine bilineare Verknüpfung hat doch die Eigenschaft, dass die Verknüpfung schiefsymmetrisch ist, oder??
Aber wie kann ich das zeigen??
danke schonmal

        
Bezug
k-Algebra und Lie-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Mi 29.10.2008
Autor: andreas

hallo

> Welche der folgenden k-Vektorräume sind k-Algebren und
> welche sind Lie-Algebren.
>  a) symmetrische 2x2-Matrizen über k.
>  b)schiefsymmetrische 3x3-Matrizen über k.
>  c) [mm]\pmat{ \IR & \IC \\ 0 & \IC }[/mm] für [mm]k=\IR.[/mm]
>  [mm]d)\pmat{ \IC & \IC \\ 0 & \IC }[/mm] für [mm]k=\IC.[/mm]
>  (Dabei sind alle Algebren mit der natürlichen
> Matrizenmultiplikation versehen, alle Lie-Algebren mit der
> Lie-Klammer [a,b]:= ab-ba.)
>  für eine Lie-Algebra gilt doch folgendes:
>  [x,x] = 0
>  [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0
> und für eine k-Algebra gilt doch, dass es immer eine
> bilineare verknüpfung AxA [mm]\to[/mm] A gibt, oder?
> aber wie zeig ich das genau?

mach dir klar, dass die entsprechenden vollen matrizenringe [mm] $K^{n \times n}$ [/mm] sowohl $k$-algebren als auch lie-algebren sind (sowas hattet ihr bestimmt auch in der vorlesung, oder?). danach musst du dann nur noch überprüfen (da die teilmenegen laut aufgabe schon untervektorräume sind), ob die teilmengen $U$ bezüglich der inneren verknüpfung abgeschlossen sind, das heißt ob für $A, B [mm] \in [/mm] U$ stets auch [mm] $A\cdot [/mm] B [mm] \in [/mm] U$ beziehungsweise $[A, B] [mm] \in [/mm] U$ gilt. probiere das doch mal.


> Eine bilineare Verknüpfung hat doch die Eigenschaft, dass
> die Verknüpfung schiefsymmetrisch ist, oder??

was meinst du damit?


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]