matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrajordan-normalform für die umkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - jordan-normalform für die umkehrfunktion
jordan-normalform für die umkehrfunktion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

jordan-normalform für die umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Mo 26.07.2004
Autor: tes

hallo! :)

ich lerne gerade auf meine LA-klausur und verzweifle an folgender aufgabe:

im a-teil muss man die jnf für eine funktion phi bestimmen, was ich hinbekommen habe, doch in teil b soll man die jnf für (phi)^(-1), also für die umkehrfunktion, bestimmen.

ich dachte, dass ich einfach die inverse der jnf von phi nehme, da man ja auch die jnf von [mm] (phi)^2 [/mm] durch quadrieren der jnf von phi erhält, wo man dann nur noch basisvektoren vertauschen muss.
aber ich bekomme etwas anderes heraus als die lösung :(

die frage ist nun, wie denn die jnf der umkehrabbildung mit der ursprünglichen jnf zusammenhängt?
wäre super, wenn mir jemand da weiterhelfen könnte!

lieben gruß,
tes

ps: Ich habe diese Frage in keinem weiteren Forum gestellt. (ist wohl pflicht, das hier zu posten, mag nicht gesperrt werden :) )

        
Bezug
jordan-normalform für die umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Mo 26.07.2004
Autor: Wessel

Hallo,

also - ich habe ihm Angebot eine "Determinantenformel für die Inverse Matrix".

Für $A [mm] \in [/mm] M(n [mm] \times n,\IK)$ [/mm]  ist  [mm] $\tilde{a_{ij}}:=(-1)^{i+j}\det A_{ji}$ [/mm] die zu $A$ komplementäre Matrix [mm] $\tilde{A}$. [/mm]  Besitzt $A$ eine nichtverschwindende Determinante, dann ist die Inverse gegeben durch [mm] $A^{-1}:=\frac{1}{\det A} \tilde{A}$. [/mm]

Für $A [mm] \in [/mm] M(2 [mm] \times 2,\IK)$ [/mm] wäre dann:

$  [mm] \pmat{ a & b \\ c & d }^{-1} [/mm] = [mm] \frac{1}{ad-bc} \pmat{ d & -b \\ -c & a }$ [/mm]

Vielleicht hilft das weiter.

Beste Grüße,
Stefan

Bezug
        
Bezug
jordan-normalform für die umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Di 27.07.2004
Autor: Astrid

Hallo Tes,

ich hatte folgende Gedanken zu dieser Aufgabe:
Angenommen, [mm] A [/mm] ist zu [mm] \Phi [/mm] gehörige quadratische Matrix und die Voraussetzungen für die Existenz der JNF J seien gegeben.
Dann existiert ja eine Basistransformationsmatrix T so dass:
[mm] T^{-1}* A * T = J [/mm]

Diese Gleichung können wir nach A "umstellen":
[mm] T * T^{-1}* A * T * T^{-1} = T* J * T^{-1} [/mm]
also [mm] A = T * J * T^{-1} [/mm]
und somit [mm] A^{-1} = (T * J * T^{-1})^{-1} = (T^{-1})^{-1} * J^{-1} * T^{-1} = T * J^{-1} * T^{-1} [/mm]
was wiederum äquivalent ist zu:
[mm] T^{-1} * A^{-1} * T = J^{-1} [/mm]

woraus ich ablese, dass es eine Basistransformationsmatrix gibt, so dass [mm] \Phi [/mm] dargestellt werden kann als [mm] J^{-1}. [/mm]
Und während ich das schreibe fällt mir auf, dass natürlich nun die große Frage ist, ob [mm] J^{-1} [/mm] wieder einer JNF ist... Wahrscheinlich nicht, aber ich lass' die Überlegung trotzdem erstmal stehen.

Wenn du mit einer konkreten Matrix rechnen musst, wird dir wohl nichts anderes übrig bleiben, als die Inverse zu berechnen und den ganzen Weg noch einmal von vorne zu gehen. Mir fällt jedenfalls auf die Schnelle keine geschickterer Weg ein.

Naja,
Gruß Astrid

Bezug
        
Bezug
jordan-normalform für die umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 02:55 Mi 28.07.2004
Autor: Stefan

Hallo!

Ist

[mm]J_F = \begin{pmatrix} a_1 E_{n_1} + N_{n_1} & 0 & \ldots & 0 \\ 0 & a_2 E_{n_2} + N_{n_2} & \ddots & \vdots \\ \vdots & 0 & \ddots & 0\\ 0 & \ldots & 0 & a_r E_{n_r} + N_{n_r} \end{pmatrix}[/mm]

die Jordansche Normalform von $F$ und $F$ invertierbar, so kann man nachrechnen, dass

[mm]J_{F^{-1}} = \begin{pmatrix} \frac{1}{a_1} E_{n_1} + N_{n_1} & 0 & \ldots & 0 \\ 0 & \frac{1}{a_2} E_{n_2} + N_{n_2} & \ddots & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \ldots & 0 & \frac{1}{a_r} E_{n_r} + N_{n_r} \end{pmatrix}[/mm]

die Jordansche Normalform von [mm] $F^{-1}$ [/mm] ist.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]