matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperirreduzible darstellungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - irreduzible darstellungen
irreduzible darstellungen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible darstellungen: tipp
Status: (Frage) beantwortet Status 
Datum: 19:34 Mi 15.10.2008
Autor: ichbinsnun

Aufgabe
Definiere [mm] V:=\IQ e_{1} \oplus\IQ e_{2} \oplus\IQ e_{3}/\IQ(e_{1}+e_{2}+e_{3}) [/mm] .Sei [mm] \delta [/mm] die Darstellung, von der [mm] S_{3} [/mm] nach GL(V), die die Einheitsvektoren [mm] e_{1}, e_{2} [/mm] und [mm] e_{3}, [/mm] permutieren lässt.
Beh.: V ist irreduzibel.  

hallo leute,
ich komme mal wieder nicht weiter. Eigentlich müsste das ganz einfach zu zeigen sein. Ich hab es versucht, indem ich mir einen echten Teilmodul [mm] \not= [/mm] 0 von V genommen habe, also einen 1-dimensiomalen Teilmodul aber damit komme ich nicht weiter. Hat jemand ne Idee, wie man da besser heran gehen könnte?
Wäre klasse

        
Bezug
irreduzible darstellungen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Do 16.10.2008
Autor: PeterB

$V$ ist 2 dimensional. Falls die Darstellung reduzibel wäre, wäre sie die direkte Summe von zwei eindimensionalen Darstellungen. Also insbesondere abelsch. Das solltest du zum Widerspruch führen können.


Bezug
                
Bezug
irreduzible darstellungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Do 16.10.2008
Autor: ichbinsnun

erstmal danke, den widerspruch bekomme ich wohl hin, aber ich seh nicht, wieso V als Summe zweier darstellungen selbst abelsch sein sollte ? wie kommt man darau?

Bezug
                        
Bezug
irreduzible darstellungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Do 16.10.2008
Autor: andreas

hi

dann wäre die darstellung äquivalent zu einer darstellung [mm] $\left( \begin{array}{c|c} K^\times & \\ \hline &K^\times \end{array} \right) \cong K^\times \times K^\times$. [/mm]

EDIT: allgemein hat die natürliche permutationsdarstellung der symmetrischen gruppe den invarianten unterraum, der von der summe der basisvektoren aufgespannt wird, aber genau dieser wird ja hier herausgeteilt. bis zur dimension drei kann man solch eine frage nach unzerlegbarkeit auch als simultanes eigenraum-problem auffassen. ENDE EDIT

EDIT2: edit1 verbessert ENDE EDIT2

grüße
andreas

Bezug
                                
Bezug
irreduzible darstellungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Fr 17.10.2008
Autor: ichbinsnun

ach ja, vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]