matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperirreduzible Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - irreduzible Polynome
irreduzible Polynome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Di 03.07.2007
Autor: Caroline

Hallo Leute,

ich komm mal wieder nicht weiter :-(

Könnt ihr mir bei folgender Aufgabe helfen?

K ist endlicher Körper. Beweise, dass K[X] unhendlich viele normierte irreduzible Polynome enthält (auch solche von beliebig hohem Grad)!!!

Bitte bitte bitte, brauche unbedingt eine möglichen Weg für diese Aufgabe

grüße

caro

        
Bezug
irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Di 03.07.2007
Autor: burnside

versuch mal den beweis, dass es unendlich viele primzahlen gibt (den beweis von euklid) auf deine situation zu übertragen. hab jetzt leider keine zeit mehr das auszuführen

Bezug
                
Bezug
irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Di 03.07.2007
Autor: Caroline

Leider verstehe ich nicht wodrauf du hinaus willst. Es ist ja hier schließlich dir Rede von Polynomen und nicht von "Zahlen"...

Ich hab immer noch keinen blassen Schimmer wie ich an diese Aufgabe drangehen soll...

Aber trotzdem Danke (auch wenn ich daraus nicht schlau werde, was ja an mir liegt ;-) )

Caro

Bezug
                        
Bezug
irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Di 03.07.2007
Autor: Regina256

ich glaube, die erste Antwort dachte an so was: Anegenommen es gibt keine irreduziblen Polynome, dann müsste eigentlich jedes Polynom ein Produkt aus Linearfaktoren sein! Es gibt in einem endlichen Körper aber nur endlich viele Linearfaktoren, man nehme deren Produkt und addiere 1, dann erhält man ein Polynom, das sicher nicht durch einen der Linearfaktoren ist, Widerspruch!

Bezug
                                
Bezug
irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:18 Mi 04.07.2007
Autor: Caroline

mmmh ok, den ansatz habe ich glaube ich nun verstanden, aber hilft mir das wirklich bei dieser aufgabe? weil damit beweise ich ja nur, dass es mind. 1 solches irreduzibles Polynom gibt, aber ich sollte ja eigentlich beweisen, dass es unendlich viele und dann auch noch mit beliebig hohem grad gibt...

grüße

caro

Bezug
                                        
Bezug
irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Mi 04.07.2007
Autor: wauwau

angenommen es gibt nur endlich viele, dann das produkt dieser endlichen irreduziblen polynom nehmen und 1 addieren dann ist das sicher auch irreduzibel...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]