matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrainvariante Unterräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - invariante Unterräume
invariante Unterräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

invariante Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Do 24.04.2008
Autor: FragenueberFragenusw

Aufgabe
Sei B eine Basis von [mm] \IR^{2} [/mm] und A [mm] \in End_{\IR}(\IR^{2}) [/mm] mit
[mm] _{B}A_{B} [/mm] = [mm] \pmat{ 1 & -1 \\ 2 & 2 } [/mm] .
Bestimmen Sie alle A-invarianten Unterräume von [mm] \IR^{2}. [/mm]

Hey!
Ich weiß nicht recht, wie ich hier vorgehen soll.
Ich denke 2 A-invariante Unterräume sind {0} und [mm] \IR^{2}. [/mm]

Aber wie komme ich auf andere?

Brauche ich dafür die EW? Aber da bekommt man ja keine raus..

Also was soll ich tun?

Grüße und danke schonmal für Hilfe!

        
Bezug
invariante Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Do 24.04.2008
Autor: pelzig


> Sei B eine Basis von [mm]\IR^{2}[/mm] und A [mm]\in End_{\IR}(\IR^{2})[/mm]
> mit
>  [mm]_{B}A_{B}[/mm] = [mm]\pmat{ 1 & -1 \\ 2 & 2 }[/mm] .
>  Bestimmen Sie alle A-invarianten Unterräume von [mm]\IR^{2}.[/mm]
>  Hey!
>  Ich weiß nicht recht, wie ich hier vorgehen soll.
>  Ich denke 2 A-invariante Unterräume sind {0} und [mm]\IR^{2}.[/mm]

Richtig.

> Aber wie komme ich auf andere?
>  
> Brauche ich dafür die EW? Aber da bekommt man ja keine
> raus..

Jeder eindimensionale, A-invariante Unterraum ist ein Eigenraum zu einem von null verschiedenem Eigenwert (warum?).
Wenn es keine von Null verschiedene Eigenwerte gibt, gibt es also keine weiteren A-invarianten Unterräume.

Bezug
                
Bezug
invariante Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Mo 28.04.2008
Autor: traumfaenger

Hallo Pelzig,

ich darf die Aufgabe auch lösen. Ich versteh sie nur nicht so ganz...

Ich finde als Eigenwerte für [mm] $_{B}A_B$ [/mm] nur komplexe Eigenwerte, nämlich [mm] $x_1 [/mm] = 3/2 + [mm] \sqrt{7}/2 [/mm] i$ und
[mm] $x_2 [/mm] 3/2 - [mm] \sqrt{7}/2 [/mm] i $.

Was heißst das nun für mögliche "invariante Unterräume" ? Die Eigenwerte sind ja komplex, und nicht in [mm] IR^2... [/mm]

Grüße und dank

Bezug
                        
Bezug
invariante Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 Di 29.04.2008
Autor: pelzig


> Ich finde als Eigenwerte für [mm]_{B}A_B[/mm] nur komplexe
> Eigenwerte, nämlich [mm]x_1 = 3/2 + \sqrt{7}/2 i[/mm] und
>  [mm]x_2 3/2 - \sqrt{7}/2 i [/mm].

Die Eigenwerte sind aber per Definition Elemente des Körpers des Vektorraums, also aus [mm] $\IR$ [/mm] in deinem Fall.

> Was heißst das nun für mögliche "invariante Unterräume" ?

D.h. es gibt einfach keine weiteren.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]