matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationintegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - integration
integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integration: integral bestimmen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:02 Mo 11.10.2010
Autor: blink23

Aufgabe
bestimmen sie folgendes integral:
[mm] $\int\sqrt{4t^2+9t^2} [/mm] dt$




hey!
kann mir wer mit ein paar hinweisen behilflich sein?
zu beginn kann man ja mal herausheben:


        
Bezug
integration: bearbeiten
Status: (Frage) beantwortet Status 
Datum: 16:04 Mo 11.10.2010
Autor: blink23

war ja noch nicht fertig^^
zu beginn kann man ja herausheben [mm] $\int \sqrt{4t^2+9t^4}dt [/mm] = [mm] \int \sqrt{t^2(4+9t^2)}dt [/mm] = [mm] \int [/mm] t [mm] \sqrt{4+9t^2}dt$ [/mm]
aber was dann?
ggglg

Bezug
                
Bezug
integration: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Mo 11.10.2010
Autor: fred97


> war ja noch nicht fertig^^
>  zu beginn kann man ja herausheben [mm]\int \sqrt{4t^2+9t^4}dt = \int \sqrt{t^2(4+9t^2)}dt = \int t \sqrt{4+9t^2}dt[/mm]
>  
> aber was dann?


Substituiere $u =  [mm] \sqrt{4+9t^2}$ [/mm]


FRED

>  ggglg


Bezug
        
Bezug
integration: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mo 11.10.2010
Autor: schachuzipus

Hallo blink23,

> bestimmen sie folgendes integral:
> [mm]\int sqrt{4t^2+9t^2} dt[/mm]

Was steht genau da? [mm] $\int{\sqrt{4t^2+9t^2} \ dt}$ [/mm]

In diesem Falle kannst du unter der Wurzel zusammenfassen ...

Oder etwa [mm] $\int{(\sqrt{4t^2}+9t^2) \ dt}$ [/mm]

Auch da kannst du die Wurzel zusammenfassen und dann summandenweise integrieren ...



>
>
> hey!
> kann mir wer mit ein paar hinweisen behilflich sein?
> zu beginn kann man ja mal herausheben:
>

Gruß

schachuzipus


Bezug
                
Bezug
integration: herausheben
Status: (Frage) beantwortet Status 
Datum: 16:11 Mo 11.10.2010
Autor: blink23

Aufgabe
zu beginn kann man ja herausheben:

[mm] $\int \sqrt{4t^2+9t^4} [/mm] dt = [mm] \int \sqrt{t^2(4+9t^2)} [/mm] dt [mm] =\int [/mm] t [mm] \sqrt{4+9t^2} [/mm] dt$



leider war ich mit dem schreiben noch nicht fertig! wollte eine vorschau, habs aber abgeschickt, sorry^^!
aber wie weiter? partiell integrieren? da kommt natürlich wieder sowas wie [mm] $\int sqrt{4+9t^2} [/mm] dt vor??
glg

Bezug
                        
Bezug
integration: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mo 11.10.2010
Autor: schachuzipus

Hallo nochmal,

> zu beginn kann man ja herausheben:
>
> [mm]\int \sqrt{4t^2+9t^4} dt = \int \sqrt{t^2(4+9t^2)} dt =\int t \sqrt{4+9t^2} dt[/mm]

Na, etwas aufpassen, es ist [mm]\sqrt{t^2}=|t|[/mm]

Hier kannst du noch 4 unter der Wurzel ausklammern und als 2 rausziehen, dann substituiere [mm]u:=\left(\frac{3}{2}t\right)^2[/mm]

>
>
> leider war ich mit dem schreiben noch nicht fertig! wollte
> eine vorschau, habs aber abgeschickt, sorry^^!

ok, habe ich zu spät gesehen!

> aber wie weiter? partiell integrieren? da kommt natürlich
> wieder sowas wie [mm]$\int sqrt{4+9t^2}[/mm] dt vor??
> glg

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]