matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungintegralwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - integralwerte
integralwerte < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integralwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Mi 27.06.2007
Autor: mickeymouse

Aufgabe
berechne folgende integralwerte:
a) [mm] \integral_{0}^{1}{2e^{2x} dx} [/mm]
b) [mm] \integral_{1}^{e}{\bruch{e^{1+3lnx}}{x} dx} [/mm]

lösung zu a)
[mm] e^{2} [/mm]
lösung zu b)
[mm] \bruch{e^{4}-e}{3} [/mm]

ich komm grad einfach nicht auf die stammfunktionen der oben genannten...könnt ihr mir helfen?

        
Bezug
integralwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 Mi 27.06.2007
Autor: mickeymouse

hi, hab zu a) bereits die lösung gefunden! aber b) noch nicht:)

Bezug
        
Bezug
integralwerte: Teilantwort
Status: (Antwort) fertig Status 
Datum: 16:27 Mi 27.06.2007
Autor: ONeill


> berechne folgende integralwerte:
>  a) [mm]\integral_{0}^{1}{2e^{2x} dx}[/mm]

Hallo!

Die Stammfunktion zu a.) ist [mm] e^{2x} [/mm] und das Ergebnis somit [mm] e^2-1\approx6,4 [/mm]
Beim zweiten kann ich dir leider nicht weiterhelfen, geht vielleicht mit partieller Integration.
Gruß ONeill

Bezug
        
Bezug
integralwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Mi 27.06.2007
Autor: Kroni

Hi,

bei Aufgabe b) steht da eigentlich folgendes:

Funktion mal innere Ableitung.

Versuchs mal mit der Substitution!

Denn die innere Ableitung ist ja genau [mm] \frac{3}{x} [/mm]

Ich würde auf die Stammfunktion

[mm] $\frac{1}{3}e^{1+3lnx}$ [/mm] tippen.

Das kann man schon fast durch "hingucken" sehen, oder eben, man wendet die Substitution an.

LG

Kroni

Bezug
        
Bezug
integralwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Mi 27.06.2007
Autor: Zaed

Hallo,

forme dir den Term einfach mal um

[mm] e^{1+3ln(x)} = e^1*e^{3ln(x)} = e^1*e^{ln(x^3)} = e*x^3 [/mm]

Nun solltest du das Integral lösen können, oder?

mfG Zaed

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]