integralfunktion einzeichnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:39 Fr 28.03.2008 | Autor: | miumiu |
man soll ohne weitere rechnung den graphen der integralfunktion einzeichnen.
die stellen,an der die funktion eine nullstelle hat,sind extremstellen der integralfunktion und die extremstellen der funktion sind wendepunkte der integralfunktion(stimmt es so?).
aber wie komme ich auf die genauen punkte ohne rechnung bzw. wie schätzt man die position der punkte ab?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:50 Fr 28.03.2008 | Autor: | abakus |
> f(x)= -x²+4, a=2
> man soll ohne weitere rechnung den graphen der
> integralfunktion einzeichnen.
>
> die stellen,an der die funktion eine nullstelle hat,sind
> extremstellen der integralfunktion und die extremstellen
> der funktion sind wendepunkte der integralfunktion(stimmt
> es so?).
> aber wie komme ich auf die genauen punkte ohne rechnung
> bzw. wie schätzt man die position der punkte ab?
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
Hallo,
es ist offensichtlich an der Stelle a=2 der Funktionswert der Integralfunktion gerade 0 (Flächeninhalt "zwischen" x-Achse, Graph und den Geraden x=a und x=a). Für a>2 liegt -x²+4, unter der x-Achse, also negativer Flächenzuwachs. Von 2 bis -2 haben wir positiven Flächenzuwachs, die Integralfunktion hat also bei -2 ihr Maximum.
Viele Grüße
Abakus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:59 Fr 28.03.2008 | Autor: | miumiu |
danke für die schnelle antwort^^!
den y-wert bekomme ich dann durch das einsetzen in die funktion?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:03 Fr 28.03.2008 | Autor: | Maggons |
Hallo!
Man kann/muss bei diesen Aufgabenstellungen nicht den exakten y- Wert wissen (außer man berechnet sie halt konkret durch Bilden der Integralfunktion und darauf folgendem Einsetzen, was hier aber vollkommen überflüssig ist).
Mach es einfach "nach Gefühl"; wichtig ist halt nur, dass dein Extrempunkt dann auch wirklich der höchste Punkt ist etc.
Es geht nur darum die wesentlichen Sachen aufzugreifen wie die Position der Extrempunkte, Wendestellen etc.; es wird keine exakte Zeichnung der Integralfunktion erwartet.
Lg
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:07 Fr 28.03.2008 | Autor: | miumiu |
könnte man die punkte auch mit hilfe der fläche des integrals einschätzen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:21 Fr 28.03.2008 | Autor: | Maggons |
Hallo!
Falls du z.B. die Fläche zwischen 2 Nullstellen der Funktion hast wie 0 und 2 und nun noch dazu weißt, dass der Flächeninhalt in diesem Intervall 2 Flächeneinheiten beträgt, kannst du ein wenig "Kästchen zählen" und deine Kurve so hoch ziehen, dass sie in etwa 2 Flächeneinheiten einschließt, falls ich dich gerade richtig verstanden hab.
Falls du aber nur die gesamte Fläche unter dem Integral hast und dieses noch mehrere Nullstellen bestitzt, sollte dir die Fläche nicht sehr viel nützen.
Lg
|
|
|
|