matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieintegral/ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - integral/ableitung
integral/ableitung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integral/ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 So 01.02.2015
Autor: mimo1

Aufgabe
Zeige, dass für t>0 gilt

[mm] \integral_\IR{x^2e^{-tx^2}dx}=-\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx} [/mm]

Benutze dies zur Berechnung von [mm] \integral_\IR{x^2e^{-x^2}dx}, [/mm] wobei [mm] \integral_\IR{e^{-tx^2}dx}=\wurzel{\pi} [/mm]

hallo

also ich bin folgend herangegangen, indem ich es von hinten gezeigt habe d.h. ich muss zeigen dass ich die ableitung in das Integral ziehen kann, oder?

[mm] -\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx}=\bruch{d}{dt}\integral_\IR{-e^{-tx^2}dx}=\limes_{h\rightarrow 0}\bruch{1}{h}(\integral_\IR{-e^{-(t+h)x^2}dx}-\integral_\IR{-e^{-tx^2}dx})=\limes_{h\rightarrow 0}(\integral_\IR{\bruch{e^{-tx^2}-e^{-(t+h)x^2}}{h}dx}) [/mm]

wir hatten eine mal eine ähnlich aufgaben bei dem wir vom Integral

[mm] \integral{e^{tx}\bruch{sinx}{x}dx} [/mm]        
die Ableitung bestimmen.
ich habe mich daran orieniertiert.

aber dann steht in der Lösung [mm] \limes_{h\rightarrow0}(\bruch{e^{-(t+h)x}-e^{-tx}}{h})=e^{-tx}=-xe^{-tx} [/mm]

in meinem fall würde es gegen [mm] e^{-tx^2} [/mm] konvergieren für h gegen 0.

meine frage jetzt:warum ist es so? ich hätte gesagt dass es gegen 0 konvergiert.

ich bin für jede hilfe dankbar und hoffe ihr könnt mir bei der Aufgabe weiterhelfen.



        
Bezug
integral/ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 So 01.02.2015
Autor: MathePower

Hallo mimo1,

> Zeige, dass für t>0 gilt
>  
> [mm]\integral_\IR{x^2e^{-tx^2}dx}=-\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx}[/mm]
>  
> Benutze dies zur Berechnung von
> [mm]\integral_\IR{x^2e^{-x^2}dx},[/mm] wobei
> [mm]\integral_\IR{e^{-tx^2}dx}=\wurzel{\pi}[/mm]
>  hallo
>  
> also ich bin folgend herangegangen, indem ich es von hinten
> gezeigt habe d.h. ich muss zeigen dass ich die ableitung in
> das Integral ziehen kann, oder?
>  
> [mm]-\bruch{d}{dt}\integral_\IR{e^{-tx^2}dx}=\bruch{d}{dt}\integral_\IR{-e^{-tx^2}dx}=\limes_{h\rightarrow 0}\bruch{1}{h}(\integral_\IR{-e^{-(t+h)x^2}dx}-\integral_\IR{-e^{-tx^2}dx})=\limes_{h\rightarrow 0}(\integral_\IR{\bruch{e^{-tx^2}-e^{-(t+h)x^2}}{h}dx})[/mm]
>  
> wir hatten eine mal eine ähnlich aufgaben bei dem wir vom
> Integral
>  
> [mm]\integral{e^{tx}\bruch{sinx}{x}dx}[/mm]        
> die Ableitung bestimmen.
> ich habe mich daran orieniertiert.
>  
> aber dann steht in der Lösung
> [mm]\limes_{h\rightarrow0}(\bruch{e^{-(t+h)x}-e^{-tx}}{h})=e^{-tx}=-xe^{-tx}[/mm]
>  
> in meinem fall würde es gegen [mm]e^{-tx^2}[/mm] konvergieren für
> h gegen 0.
>  
> meine frage jetzt:warum ist es so? ich hätte gesagt dass
> es gegen 0 konvergiert.
>


Betrachte Zähler und Nenner des Ausdruckes:

[mm]\bruch{e^{-tx^2}-e^{-(t+h)x^2}}{h}[/mm]

Zähler und Nenner gehem hier für h gegen 0 ebenfalls gegen 0.
Somit liegt hier ein unbestimmter Ausdruck der Form "[mm]\bruch{0}{0}[/mm]" vor.
Das  ist somit ein Fall für L'hospital.


> ich bin für jede hilfe dankbar und hoffe ihr könnt mir
> bei der Aufgabe weiterhelfen.
>  


Gruss
MathePower

Bezug
                
Bezug
integral/ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 So 01.02.2015
Autor: mimo1

dankeschön, darauf müsste ich eigenlich auch selber kommen :)

Bezug
        
Bezug
integral/ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Mo 02.02.2015
Autor: fred97

  
> aber dann steht in der Lösung
> [mm]\limes_{h\rightarrow0}(\bruch{e^{-(t+h)x}-e^{-tx}}{h})=e^{-tx}=-xe^{-tx}[/mm]

Das erste "=" ist falsch !

Die Sache mit l'Hospital zu bearbeiten , halte ich für überzogen.

Sei x fest und setze [mm] f(t):=e^{-tx} [/mm]

Dann gilt

     [mm] $\bruch{e^{-(t+h)x}-e^{-tx}}{h}=\bruch{f(t+h)-f(t)}{h} \to f'(t)=-xe^{-tx}$ [/mm]  für $h [mm] \to [/mm] 0$.

FRED

>  
> in meinem fall würde es gegen [mm]e^{-tx^2}[/mm] konvergieren für
> h gegen 0.
>  
> meine frage jetzt:warum ist es so? ich hätte gesagt dass
> es gegen 0 konvergiert.
>
> ich bin für jede hilfe dankbar und hoffe ihr könnt mir
> bei der Aufgabe weiterhelfen.
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]