matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisinnere Komposition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - innere Komposition
innere Komposition < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

innere Komposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Mo 30.10.2006
Autor: ruya

Aufgabe
es seien u und v (naive) ganze zahlen.
a) unter welchen bedingungen an u und v ist [mm] x\circ [/mm] y := ux + vy eine wohldefinierte kommutative innere komposition auf [mm] \INnaiv? [/mm]
b) unter welchen bedingungen an u und v ist [mm] x\circ [/mm] y := ux + vy eine wohldefinierte assoziative innere komposition auf [mm] \INnaiv? [/mm]

hi leute,
bestimmt ist diese aufgabe ganz simple aber ich stell mich wiedermal ein wenig schusselig an.
was meint man z.b. mit den bedingungen? was könnten diese denn sein? außerdem weiß ich nicht wie ich mir den begriff "wohldefiniert" erklären soll. die innere komposition ist doch die addition oder?
danke für jede hilfe

        
Bezug
innere Komposition: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Mi 01.11.2006
Autor: Leopold_Gast

"naive ganze Zahl": das ist lustig! Sind wir also auch einmal lustig und nehmen naiverweise einfach [mm]u=2, v=-3[/mm]. Dann berechnet man z.B.

[mm]5 \circ 2 = 4[/mm]
[mm]2 \circ 5 = -11[/mm]

Für diese Wahl von [mm]u,v[/mm] gilt also das Kommutativgesetz schon einmal nicht.

Unterstellen wir nun, daß das Kommutativgesetz gilt:

[mm]x \circ y = y \circ x[/mm]

Nach Definition heißt das

[mm]xu + yv = yu + xv[/mm]

Sortiert und umgeformt führt das auf:

[mm](u-v)(x-y) = 0[/mm]

Welche Anforderung an [mm]u,v[/mm] muß man also stellen, damit dies für alle [mm]x,y[/mm] wahr wird?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]