matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungeninjektive Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - injektive Abbildung
injektive Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

injektive Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:56 So 07.11.2010
Autor: Mandy_90

Aufgabe
Sei R ein kommutativer Ring.Man zeige,dass die Abbildung [mm] f:R-->R^{2 \times 2},r \mapsto \pmat{ 1 & r \\ 0 & 1 } [/mm] injektiv ist .

Hallo,

mir ist klar,dass die Abbildung injektiv ist,ich weiß nur nicht genau wie ich das zeigen soll.Wenn ich hinschreibe: [mm] \forall [/mm] r [mm] \in [/mm] R:f(r)=f(s) --->r=s.
Ist damit schon gezeigt,dass die Abbildung injektiv ist,denn das ist eigentlich nur die Definition von Injektivität, wie soll man das sonst "zeigen" ?

lg

        
Bezug
injektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 So 07.11.2010
Autor: M.Rex

Hallo

Ich würde über die Kontraposition gehen, nimm also an, dass f nicht injektiv ist, also dass es [mm] r_{1} [/mm] und [mm] r_{2} [/mm] gibt, mit [mm] r_{1}\ne r_{2} [/mm] aber [mm] f(r_{1})=f(r_{2}) [/mm] und führe das zu einem Wiederspruch.

Marius


Bezug
                
Bezug
injektive Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 So 07.11.2010
Autor: Mandy_90


> Hallo
>  
> Ich würde über die Kontraposition gehen, nimm also an,
> dass f nicht injektiv ist, also dass es [mm]r_{1}[/mm] und [mm]r_{2}[/mm]
> gibt, mit [mm]r_{1}\ne r_{2}[/mm] aber [mm]f(r_{1})=f(r_{2})[/mm] und führe
> das zu einem Wiederspruch.
>  

OK,also angenommen f ist nicht injektiv, dann ist [mm] f(r_{1})=\pmat{ 1 & r_{1} \\ 0 & 1 } [/mm] und [mm] f(r_{2})=\pmat{ 1 & r_{2} \\ 0 & 1 } [/mm]

Jetzt muss ich zeigen,dass [mm] f(r_{1})=f(r_{2}), [/mm] aber [mm] r_{1} \not= r_{2}. [/mm]
Wie zeig ich denn dass [mm] \pmat{ 1 & r_{1} \\ 0 & 1 }=\pmat{ 1 & r_{2} \\ 0 & 1 } [/mm] , denn zunächst sehen sie ja ungleich aus ?

lg

Bezug
                        
Bezug
injektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 So 07.11.2010
Autor: fred97


> > Hallo
>  >  
> > Ich würde über die Kontraposition gehen, nimm also an,
> > dass f nicht injektiv ist, also dass es [mm]r_{1}[/mm] und [mm]r_{2}[/mm]
> > gibt, mit [mm]r_{1}\ne r_{2}[/mm] aber [mm]f(r_{1})=f(r_{2})[/mm] und führe
> > das zu einem Wiederspruch.
>  >  
>
> OK,also angenommen f ist nicht injektiv, dann ist
> [mm]f(r_{1})=\pmat{ 1 & r_{1} \\ 0 & 1 }[/mm] und [mm]f(r_{2})=\pmat{ 1 & r_{2} \\ 0 & 1 }[/mm]


So ist es gemeint: angenommen f ist nicht injektiv, dann existieren [mm] r_1 [/mm] und [mm] r_2 [/mm] mit:

          [mm] f(r_{1})=\pmat{ 1 & r_{1} \\ 0 & 1 }=[/mm] [mm]f(r_{2})=\pmat{ 1 & r_{2} \\ 0 & 1 }[/mm],

aber [mm] r_1 \ne r_2 [/mm]

Kann das sein ?

FRED

>  
> Jetzt muss ich zeigen,dass [mm]f(r_{1})=f(r_{2}),[/mm] aber [mm]r_{1} \not= r_{2}.[/mm]
>  
> Wie zeig ich denn dass [mm]\pmat{ 1 & r_{1} \\ 0 & 1 }=\pmat{ 1 & r_{2} \\ 0 & 1 }[/mm]
> , denn zunächst sehen sie ja ungleich aus ?
>  
> lg


Bezug
                                
Bezug
injektive Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:38 So 07.11.2010
Autor: Mandy_90


>
> So ist es gemeint: angenommen f ist nicht injektiv, dann
> existieren [mm]r_1[/mm] und [mm]r_2[/mm] mit:
>  
> [mm]f(r_{1})=\pmat{ 1 & r_{1} \\ 0 & 1 }=[/mm] [mm]f(r_{2})=\pmat{ 1 & r_{2} \\ 0 & 1 }[/mm],
>  
> aber [mm]r_1 \ne r_2[/mm]
>  
> Kann das sein ?

Das kann nicht sein,daher ist f injektiv.Reicht das schon als Begründung?

lg


Bezug
                                        
Bezug
injektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 So 07.11.2010
Autor: fred97


> >
> > So ist es gemeint: angenommen f ist nicht injektiv, dann
> > existieren [mm]r_1[/mm] und [mm]r_2[/mm] mit:
>  >  
> > [mm]f(r_{1})=\pmat{ 1 & r_{1} \\ 0 & 1 }=[/mm] [mm]f(r_{2})=\pmat{ 1 & r_{2} \\ 0 & 1 }[/mm],
>  
> >  

> > aber [mm]r_1 \ne r_2[/mm]
>  >  
> > Kann das sein ?
>  
> Das kann nicht sein,daher ist f injektiv.Reicht das schon
> als Begründung?


Ja

FRED

>  
> lg
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]