matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizeninjektive Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - injektive Abbildung
injektive Abbildung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

injektive Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Di 02.12.2008
Autor: Thomas87

Aufgabe
[Dateianhang nicht öffentlich]

Also vorab, die Aufgabe 4 b) hab ich, ist ja auch nicht so schwer, jedoch tu ich mich sehr schwer an den anderen beiden Teilaufgaben!
Könnt ihr mir helfen?

LG.
Thomas

Dateianhänge:
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
injektive Abbildung: c)
Status: (Antwort) fertig Status 
Datum: 19:40 Di 02.12.2008
Autor: strangelet

Schau nach der Definition der Injektivität, dann schau nach der Definition der Gleichheit von zwei Matrizen.

In der Aufgabe steht, was f(x) ist ([mm]\pmat{ 1 & x \\ 0 & 1 }[/mm]). Dann kommst du bestimmt selbst drauf, was f(y) und f(x+y) ist. Wenn du das hast, dann guck, ob f(x)*f(y) wirklich f(x+y) ist. Du hast gesagt, dass du b) hast, also Matrizen multiplizieren kannst du. Falls du Probleme hast, sag welche,
gruss Strangelet

Bezug
        
Bezug
injektive Abbildung: a)
Status: (Antwort) fertig Status 
Datum: 20:09 Di 02.12.2008
Autor: strangelet

Hier muss man die Definition der Matrixmultiplikation kennen.
Zuerst könnte man prüfen, ob die Grösse beider Matrizen überhaupt die gleiche ist.
Dann, wenn AB=C, der Eintrag in i-ter Reihe und j-ter Spalte der Matrix C ist [mm]c_{ij}=\summe_{k=1}^{n}{a_{ik}*b_{kj}}[/mm]
Dann muss man gucken, was [mm]c_{ij}^T[/mm] also [mm](\summe_{k=1}^{n}{a_{ik}*b_{kj}})^T[/mm] ist, da wird man benutzen, dass [mm](A+B)^T=A^T+B^T[/mm] und dann [mm](x_{ij})^T=x_{ji}[/mm].
Dann benutzt man die Definition der Matrixmultiplikation für die Einträge der Matrix [mm]B^T*A^T[/mm] und guckt, ob das gleiche rauskommt.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]