inhomogene Evolutionsgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Eine Hefepopulation entwickelt sich unter Laborbedingungen mit exponentiellem Wachstum mit der Wachstumskonstante k = 0.0607 [mm] Tag^{-1}.
[/mm]
Nehmen Sie an, dass Sie (gleichmäßig) pro Tag 10 Gramm abnehmen möchten. Wie groß muss die Anfangspopulation sein, damit das Gewicht der Hefepopulation konstant bleibt? Begründen Sie den Lösungsweg ausführlich und rechnen Sie in Gramm. |
Hallo,
Ich wollte die inhomogene Evolutionsgleichung wie in der Musterlösung benutzen. Die inhomogene Evolutionsgleichung ist eine Differentialgleichung der Biologie, die für Bakterienpopulationen etc genutzt werden, die so aussieht im Allgemeinen:
y' = k * y - a
Wobei k die Wachstumskonstante sein sollte und a ein Störfaktor ist, wenn man z.B. nach jedem Tag eine bestimmte Menge an Bakterien entfernen oder zufügen will.
1.Frage:
Nun habe ich in meinem Hefter einen Schritt nicht verstanden, wie ich von
y' = k * y - a
auf
y = [mm] (y_{0} [/mm] - [mm] \bruch{a}{k}) [/mm] * [mm] e^{k*x} [/mm] + [mm] \bruch{a}{k}
[/mm]
gekommen bin, denn ich würde eigentlich auf
y = C * [mm] e^{k*x} [/mm] + [mm] \bruch{a}{k}
[/mm]
mittels Variation der Konstanten kommen.
2.Frage
Ich hab verschiedene Wege versucht und weiß eigentlich, dass die 1. Ableitung meiner Hefepopulation-Funktion = 10 sein muss, damit wenn ich wieder 10 abziehe keine Veränderung habe.
Ich ende immer dabei y'(x) = k * C * [mm] e^{k * x} [/mm] = 10 setzen zu wollen, aber weiß dann nicht ganz recht was ich für x einsetzen sollte.
Jeder Tipp ist gerne gesehen.
Gruß,
Ulquiorra
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:40 Sa 08.07.2017 | Autor: | leduart |
Hallo
deine allgemeine Lösung der Dgl ist richtig. aber jetzt musst du C bestimmen, indem du die Anfangsbedingung [mm] y(0)=y_0 [/mm] einsetzt.
dann kommst du auf [mm] C=y_0-a/k
[/mm]
2. a ist doch 10 g/d und du willst dass sich bei diesem a y nicht ändert
also y'=0
also [mm] 0=(k*y_0-a)*e^{kt} [/mm] und daraus [mm] y_0 [/mm] bestimmen
Gruß leduart
|
|
|
|