matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesinduzierte Metrik Durchmesser
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - induzierte Metrik Durchmesser
induzierte Metrik Durchmesser < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

induzierte Metrik Durchmesser: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:12 Di 05.05.2009
Autor: property_of_ned_flanders

Aufgabe
Ist [mm] X\not= [/mm] {0} ein [mm] \IR-Vektorraum [/mm] und d von einer Norm [mm] \parallel *\parallel [/mm] auf X induzierte Metrik, so gilt diam [mm] B_{r}(a)=2r [/mm] für [mm] a\in [/mm] X und r>0.

Hallo,

ich komme da irgendwie nicht weiter.
Zunächst mal einige Definitionen:
d ist durch eine Norm [mm] \parallel *\parallel [/mm] auf X induziert, d.h. [mm] d(x,y)=\parallel [/mm] x-y [mm] \parallel [/mm]
[mm] B_{r}(a):=\{y\in X|d(a,y)\le r\} [/mm] hier also [mm] B_{r}(a)=\{ y\in X| \parallel a-y\parallel\le r\} [/mm]
diam A= [mm] sup_{x,y\in A}d(x,y) [/mm]

Ich muss also insgesamt zeigen:
[mm] sup_{x,y\in\{z\in X|\parallel z-a \parallel \le r\}}\parallel x-y\parallel=2r [/mm]

Kann ich mit [mm] sup_{x,y \in B_{r}(a)}\parallel x-y\parallel=sup_{z \in B_{r}(a)}\parallel 2*(z-a)\parallel [/mm] argumentieren oder ist das falsch?

Gürße Ned.


        
Bezug
induzierte Metrik Durchmesser: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Di 05.05.2009
Autor: leduart

Hallo
du musst schon ||x-y||=||x-a -(y-a)|| mit der Dreiecksungl. angehen.
Gruss leduart

Bezug
                
Bezug
induzierte Metrik Durchmesser: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Di 05.05.2009
Autor: property_of_ned_flanders

Hallo Leduart und alle anderen ;-),

>  du musst schon ||x-y||=||x-a -(y-a)|| mit der Dreiecksungl. angehen.

Wenn ich die Dreiecksungleichung benutze, bekomme ich aber doch immer
[mm] \le [/mm] 2r raus und ich brauche doch =2r.

Wie kann ich das machen?

Gruß Ned.

Bezug
                        
Bezug
induzierte Metrik Durchmesser: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Di 05.05.2009
Autor: pelzig

Mit leduarts Hinweis hast du [mm] $\operatorname{diam}(B_r(0))\le [/mm] 2r$ gezeigt. Bleibt noch das [mm] $\ge$ [/mm] zu zeigen. Wähle ein [mm] x\in [/mm] X ungleich 0. Dann sind [mm] $y:=\frac{rx}{\|r\|}$ [/mm] und -y in [mm] $B_r(0)$ [/mm] und [mm] $d(y,-y)=\|2y\|=2r$. [/mm]

Gruß, Robert

Bezug
                                
Bezug
induzierte Metrik Durchmesser: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Di 05.05.2009
Autor: property_of_ned_flanders


> Mit leduarts Hinweis hast du [mm]\operatorname{diam}(B_r(0))\le 2r[/mm]
> gezeigt. Bleibt noch das [mm]\ge[/mm] zu zeigen. Wähle ein [mm]x\in[/mm] X
> ungleich 0. Dann sind [mm]y:=\frac{rx}{\|r\|}[/mm] und -y in [mm]B_r(0)[/mm]
> und [mm]d(y,-y)=\|2y\|=2r[/mm].
>  

Ah, ich glaube, dass habe ich jetzt verstanden. Ich vermute mal, dass das bei [mm]y:=\frac{rx}{\|r\|}[/mm]  ein Tippfehler ist und im Nenner [mm] \parallel [/mm] x [mm] \parallel [/mm] und nicht [mm] \parallel [/mm] r [mm] \parallel [/mm] stehen muss oder? (Sonst habe ich es doch noch nicht verstanden.)

Und wenn ich das jetzt allgemein machen will (also für [mm] B_{r}(a) [/mm] und nicht nur für [mm] B_{r}(0) [/mm] ) muss ich doch einfach [mm] y_{1}=a+\frac{rx}{\|x\|} [/mm] und [mm] y_{2}=a-\frac{rx}{\|x\|} [/mm] wählen und dann [mm] d(y_{1},y_{2}) [/mm] =...=2r berechnen oder?

Danke und Grüße Ned

Bezug
                                        
Bezug
induzierte Metrik Durchmesser: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Di 05.05.2009
Autor: pelzig


> Ah, ich glaube, dass habe ich jetzt verstanden. Ich vermute
> mal, dass das bei [mm]y:=\frac{rx}{\|r\|}[/mm]  ein Tippfehler ist
> und im Nenner [mm]\parallel[/mm] x [mm]\parallel[/mm] und nicht [mm]\parallel[/mm] r
> [mm]\parallel[/mm] stehen muss oder?

Richtig...

> Und wenn ich das jetzt allgemein machen will (also für
> [mm]B_{r}(a)[/mm] und nicht nur für [mm]B_{r}(0)[/mm] ) muss ich doch einfach
> [mm]y_{1}=a+\frac{rx}{\|x\|}[/mm] und [mm]y_{2}=a-\frac{rx}{\|x\|}[/mm]
> wählen und dann [mm]d(y_{1},y_{2})[/mm] =...=2r berechnen oder?

Richtig...

Gruß, Robert

Bezug
                                                
Bezug
induzierte Metrik Durchmesser: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Di 05.05.2009
Autor: property_of_ned_flanders

Vielen Dank für eure Hilfe.

Ned

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]