matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktioninduktionsbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - induktionsbeweis
induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

induktionsbeweis: Multiplikation
Status: (Frage) beantwortet Status 
Datum: 20:28 Mo 11.12.2006
Autor: wulfstone

Aufgabe
Zeigen Sie durch Induktion: Für alle x,y,z [mm] \in \IN [/mm] gilt
             mult(x+y,z) = mult(x,z)+mult(y,z)


Hallo erst einmal
ich wäre über eine rasche antwort sehr froh!

Gegeben ist folgende Rekursion,

mult(x,y) := 0                     : x=0
und
mult(x,y) := y+mult(x-1,y)  : x > 0

so aber ich weiß nicht genau was rekursion mit
induktion zu tun haben soll!
Und dann welche induktion soll ich nehmen,

ich habe mir es mit struktureller Induktion überlegt,
weiß aber nicht genau nach welchen regeln ich sie abarbeiten soll,
ich meine ich brauche doch eine induktive definition des prädikates
um zu induzieren!

Stehe total auf dem schlauch, habe aber das problem
dass ich es schon morgen abgeben muss und aus zeitmangel ,
konnte ich die aufgabe nicht früher bearbeiten!
Danke im voraus
Wulfstone

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
induktionsbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Mo 11.12.2006
Autor: gore

Hi,
das dürfte mit vollständiger Induktion gehen.
Die rekursive Definition der Multiplikation ist dabei deine Stützen um mult(x+y,z) umzuformen.
Mach dir die rekursive Definiton klar und setze mal ein paar Werte ein und dann beginne die Induktion.
Ist vielleicht ein wenig mühsam aber nicht schwer. Du musst nur drauf achten, dass du dich lediglich auf die Rekusionen berufst, denn du willst hier eine Rechenregel beweisen, die eigentlich "selbstverständlich" für uns ist...

Bezug
                
Bezug
induktionsbeweis: vollständige induktion
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:42 Mo 11.12.2006
Autor: wulfstone

nun mit vollständiger induktion habe ich auch schon überlegt,
aber  ich habe 3 variablen, welche soll ich denn dazu benutzen?
ich gehe mal von z aus , da sie auf der linke seite wie rechten seinte gleiche wichtigkeit hat ?

Bezug
        
Bezug
induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Di 12.12.2006
Autor: zahlenspieler

Hallo Wulfstone,
> Zeigen Sie durch Induktion: Für alle x,y,z [mm]\in \IN[/mm] gilt
>               mult(x+y,z) = mult(x,z)+mult(y,z)
>  
>
> Hallo erst einmal
> ich wäre über eine rasche antwort sehr froh!

Sorry, vielleicht kommt sie jetzt zu spät. Na dann.

>  
> Gegeben ist folgende Rekursion,
>  
> mult(x,y) := 0                     : x=0
>  und
> mult(x,y) := y+mult(x-1,y)  : x > 0
>  
> so aber ich weiß nicht genau was rekursion mit
> induktion zu tun haben soll!

Tja, ich war auch über diesen Zusammenhang überrascht, als ich das vor ein paar Monaten durchgerechnet hab :).

>  Und dann welche induktion soll ich nehmen,
>  
> ich habe mir es mit struktureller Induktion überlegt,
>  weiß aber nicht genau nach welchen regeln ich sie
> abarbeiten soll,
>  ich meine ich brauche doch eine induktive definition des
> prädikates
> um zu induzieren!

1. Mit der Def. von mult kannst Du zunächst den Fall $x=0$ und [mm] $y,z\in \mathbb{N}_0$ [/mm] bel. beweisen. Dann nimmst Du an, daß die Behauptung für $x$ und alle $y,z [mm] \in \mathbb{N}_0$ [/mm] gilt und schließt auf $x+1$.
2. Zeige: [mm]x \in \IN_0 \wedge \forall y,z \in \IN_0 \folgt mult(x,y+z)=mult(x,y)+mult(x,z)[/mm].
(Hier läßt Du also $x$ fest.)
Hier brauchst Du - fürchte ich - noch $mult(x,y)=mult(y,x)$.
Wenn Du die Kommutativität der Addition benutzen kannst, brauchst Du hier nur z.B. Induktion nach $y$.
Dann fehlt noch [mm]x,y \in \IN_0 \wedge \forall z \in \IN_0 \folgt \ldots[/mm].
Mfg
zahlenspieler


Bezug
                
Bezug
induktionsbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:19 Di 12.12.2006
Autor: wulfstone

danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]