matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigesinduktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - induktion
induktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Mo 10.04.2006
Autor: Lars_B.

Aufgabe
Beweisen Sie durch vollständige Induktion die Formel
[mm] \summe_{i=1}^{n} \bruch{1}{(2i-1)(2i+1)} [/mm] =  [mm] \bruch{n}{2n+1} [/mm]

Habe danach ein wenig gegoogelt, aber bin aus den gefundenen Seite nicht wirklich schlau geworden.

Wie muss man an eine solche Aufgabe rangehen ?

Danke
Gruss
Lars

        
Bezug
induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Mo 10.04.2006
Autor: kretschmer

Hallo,

also wie dort steht. Per Induktion. Damit hast Du all solchen kram, wie Induktionsanfang, Induktionsvoraussetzung, Induktionsschritt, etc., den Du Dir überlegen musst. Der eigentliche Beweis ist sehr einfach, also versuch es mal einfach selber ;-) und schreibe wenn Du nicht weiter kommst, wo es hapert...

--
Gruß
Matthias

Bezug
                
Bezug
induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Mo 10.04.2006
Autor: Lars_B.

1. prüfen ob die Aussage für n=1 gilt..

[mm] \bruch{1}{(2*1-1)(2*1+1)} [/mm] =  [mm] \bruch{1}{2*1+1} [/mm]

[mm] \bruch{1}{3} [/mm] = [mm] \bruch{1}{3} [/mm]


2. Induktionsvoraussetzung:
Wie läuft das jetzt mit n+1 ?

Muss ich einfach für i = n+1 einsetzen und prüfen ob [mm] \bruch{n}{2n+1} [/mm] rauskommt ?

Danke
Gruss
Lars

Bezug
                        
Bezug
induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Mo 10.04.2006
Autor: DaMenge

Hi,

> 1. prüfen ob die Aussage für n=1 gilt..
>  
> [mm]\bruch{1}{(2*1-1)(2*1+1)}[/mm] =  [mm]\bruch{1}{2*1+1}[/mm]
>  
> [mm]\bruch{1}{3}[/mm] = [mm]\bruch{1}{3}[/mm]
>  

[ok]


> 2. Induktionsvoraussetzung:
>  Wie läuft das jetzt mit n+1 ?
>  
> Muss ich einfach für i = n+1 einsetzen und prüfen ob
> [mm]\bruch{n}{2n+1}[/mm] rauskommt ?


nein, die induktionsvorraussetzung ist, dass du die Formel fuer n schon bewiesen hast (du also die Gleichheit verwenden darfst fuer n) und die Induktionsbehauptung, die noch zu zeigen ist, dass dann die Formel auch fuer (n+1) gilt, also :
[mm] $\summe_{i=1}^{n+1} \bruch{1}{(2i-1)(2i+1)}=\bruch{n+1}{2*(n+1)+1}$ [/mm]
(dann folgt naemlich aus den Induktionsanfang die Richtigkeit fuer alle nachfolgenden wie beim Domino)

nun ist aber :
[mm] $\summe_{i=1}^{n+1} \bruch{1}{(2i-1)(2i+1)}=\summe_{i=1}^{n} \bruch{1}{(2i-1)(2i+1)}+\bruch{1}{(2(n+1)-1)(2(n+1)+1)}$ [/mm]

und auf den ersten Summanden darfst du nun die Induktionsvorraussetzung anwenden (also dass die Formel fuer n schon gilt !) - kommst du damit auf die rechte Seite der Induktionsbehauptung ?

viele Gruesse
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]