matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenimplizite differentation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - implizite differentation
implizite differentation < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

implizite differentation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:11 Sa 18.05.2013
Autor: barneydlx

Aufgabe
[mm] f(x,y)=4x^{2}+2y^{2}-34=0 [/mm]
implizite differentation von f  nach x und anschließende Auflösung nach y' ermöglicht die berechnung von f'(X).
a) an welchen zwei punkten ist dieses vorgehen nicht möglich
b) geben sie für y=f(x),y' und y'' darstellungen der Gestalt y'=Q(x,y), y''=R(x,y,y') und y''=S(x,y) an. diese sind überall gültig bis auf in den beiden punkten aus a .


zu a. [mm] f'(x)=\bruch{-2x}{y} [/mm]   da denke ich mir doch das [mm] y\not=0 [/mm] damit [mm] x\not=\bruch{\wurzel{34}}{2}. [/mm] nur was ist dann der zweite punkte?

zu b. y'=Q(x,y) würde ich sagen ist [mm] \bruch{-2x}{y} [/mm]
aber was ich bei den anderen hinschreiben soll verstehe ich nicht ganz...

        
Bezug
implizite differentation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Sa 18.05.2013
Autor: Diophant

Hallo,

> [mm]f(x,y)=4x^{1}+2y^{2}-34=0[/mm]
> implizite differentation von f nach x und anschließende
> Auflösung nach y' ermöglicht die berechnung von f'(X).
> a) an welchen zwei punkten ist dieses vorgehen nicht
> möglich
> b) geben sie für y=f(x),y' und y'' darstellungen der
> Geschalt y'=Q(x,y), y''=R(x,y,y') und y''=S(x,y) an. diese
> sind überall gültig bis auf in den beiden punkten aus a
> .
> zu a. [mm]f'(x)=\bruch{-2x}{y}[/mm]

Das ist schonmal falsch (wo kommt die 2 her?).

da denke ich mir doch das

> [mm]y\not=0[/mm] damit [mm]x\not=\bruch{\wurzel{34}}{2}.[/mm] nur was ist
> dann der zweite punkte?

Hm, das ist eine gute Frage. So, wie du die Aufgabe angegeben hast, gibt es nur den Punkt

[mm] P\left(\bruch{17}{2}|0\right) [/mm]

Wie du auf deine x-Koordinate kommst, ist ebenfalls rätselhaft.

>

> zu b. y'=Q(x,y) würde ich sagen ist [mm]\bruch{-2x}{y}[/mm]
> aber was ich bei den anderen hinschreiben soll verstehe ich
> nicht ganz...

Klären wir mal die a). Ich weiß sowie so nicht, was eine 'Geschalt' ist und würde dich bitten, beim Abfassen deiner Fragen sorgfältiger vorzugehen.

Prüfe also nochmals, ob du die zu untersuchende Funktion korrekt angegeben hast.

Gruß, Diophant

Bezug
                
Bezug
implizite differentation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Sa 18.05.2013
Autor: barneydlx

moin,

sorry hatte ein kleinen fehler in die formel eingebaut, sollte jetzt mehr sinn ergeben.
mfg

Bezug
        
Bezug
implizite differentation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 So 26.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]