matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisimplizite Fkt ?!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - implizite Fkt ?!
implizite Fkt ?! < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

implizite Fkt ?!: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 19:07 Fr 16.06.2006
Autor: thommy

Aufgabe
[Dateianhang nicht öffentlich]

Hallo zusammen,

ich hab eine frage zum 2. teil der aufgabe. Sehe ich es richtig das man hier mit dem Satz über Umkehrfunktionen (implizite Fkt.) rangehen muss oder liege ich total falsch?
also ich würd gern zeigen das det(A-E)!=0 ist, jedoch weiß ich nicht wie ich das machen soll. Die Einschränkung, das jede Zeile der Matrix betraglich kleiner 1 ist muss man sicherlich irgendwie verwenden, nur wie? :-)

ich bin dankbar für jede kleine Anregung

grüße thommy

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
implizite Fkt ?!: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Sa 17.06.2006
Autor: Leopold_Gast

Das lineare Gleichungssystem [mm](A - E) x = b[/mm] ist genau dann eindeutig lösbar, wenn das zugehörige homogene System [mm](A - E) x = 0[/mm] nur die triviale Lösung besitzt. Letzteres kann man aber auch als Fixpunktproblem auffassen:

[mm]Ax = x[/mm]

Betrachte daher die Abbildung [mm]T(x) = Ax[/mm] für [mm]x \in V[/mm] und weise für sie die Voraussetzungen des Banachschen Fixpunktsatzes nach, also die Existenz einer positiven Konstanten [mm]L<1[/mm] mit

[mm]\left\| T(x) - T(y) \right\|_{\infty} \leq L \, \left\| x - y \right\|_{\infty}[/mm] für alle [mm]x,y \in V[/mm]

Wegen der Linearität von [mm]T[/mm] genügt es sogar,

[mm]\left\| T(x) \right\|_{\infty} \leq L \, \left\| x \right\|_{\infty}[/mm] für alle [mm]x \in V[/mm]

nachzuweisen. Und beim Abschätzen sollte dir auffallen, daß es mit [mm]L = \max_i \left\{ \sum_j ~ \left| a_{ij} \right| \right\}[/mm] funktioniert.

Der Fixpunktsatz garantiert dann, daß nur [mm]x=0[/mm] das homogene System löst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]