matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebrahyperbolische Abstand
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - hyperbolische Abstand
hyperbolische Abstand < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hyperbolische Abstand: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:20 Mo 25.01.2016
Autor: knowhow

Aufgabe
Zeige über IH:

1) Ist die Gerade L durch [mm] w_0\not=w_1 \in [/mm] IH ein Halbkreis, der [mm] \IR [/mm] in a'<a trifft, so ist

[mm] DV(w_0,a,w_1,a')=\bruch{a-w_0}{a'-w_0}:\bruch{a-w_1}{a'-w_1} [/mm] reell und positiv

Ist die GErade parallel zur Imaginärachse durch [mm] a\in \IR, [/mm] so gilt [mm] DV(w_0,a,w_1,a'=\infty)=\bruch{w_0-a}{w_1-a} \in \IR_{>0} [/mm]

2) Für [mm] w_0\not=w_1 [/mm] ist [mm] d(w_0,w_1):=|ln DV(w_0,a,w_1,a')|, [/mm] a,a' wie in 1), symmetrisch in [mm] w_0, w_1 [/mm] und a,a'. Liegen [mm] w_0=a+it_0, w_1=a+it_1 [/mm] auf Parallelen zur Imaginärachse durch a, so ist [mm] d(w_0,w_1)=|ln\bruch{t_0}{t_1}|. [/mm]

3) [mm] d(w_0,w_1)=d(f(w_0),f(w_1)) [/mm] für [mm] f\in PSl_2(\IR) [/mm]

Hallo zusammen,

zu 1) [mm] \limes_{a'\rightarrow\infty} DV(w_0,a,w_1,a')=\limes_{a'\rightarrow\infty} \bruch{a-w_0}{a'-w_0}:\bruch{a-w_1}{a'-w_1} =\limes_{a'\rightarrow\infty} \bruch{a-w_0}{a'-w_0}\cdot \bruch{a'-w_1}{a-w_1}=\limes_{a'\rightarrow\infty} \bruch{a'-w_1}{a'-w_0}\cdot \bruch{a-w_0}{a-w_1}=\limes_{a'\rightarrow\infty} \bruch{a'-w_1}{a'-w_0}\cdot \bruch{a-w_0}{a-w_1}=\limes_{a'\rightarrow\infty} \bruch{a'(1-\bruch{w_1}{a'})}{a'(1-\bruch{w_0}{a'})}\cdot \bruch{a-w_0}{a-w_1}=\limes_{a'\rightarrow\infty} \bruch{1-\bruch{w_1}{a'}}{1-\bruch{w_0}{a'}}\cdot \bruch{a-w_0}{a-w_1} [/mm]

und [mm] \bruch{w_1}{a'}=0 [/mm] und [mm] \bruch{w_0}{a'} [/mm] für [mm] a'\rightarrow \infty [/mm] und somit habe wir dann

[mm] ...=\bruch{a-w_0}{a-w_1} [/mm]

wie zeige ich jetzt das [mm] DV(w_0,a,w_1,a')=\bruch{a-w_0}{a'-w_0}:\bruch{a-w_1}{a'-w_1} [/mm] reell und positiv ist?

ich wäre so an die aufgabe herangegangen:
[mm] DV(w_0,a,w_1,a')=\bruch{a-w_0}{a'-w_0}:\bruch{a-w_1}{a'-w_1} =\bruch{(a-w_0)(a'+w_0)}{(a'-w_0)(a'+w_0)}:\bruch{(a-w_1)(a'+w_1)}{(a'-w_1)(a'+w_1)} =\bruch{aa'+w_0(a-a')+w_0^2}{a'^2+w_0^2}:\bruch{aa'+w_1(a-a')+w_1^2}{a'^2+w_1^2} [/mm]

Ich denke dass diese Ansatz falsch.

zu 2) da habe ich leider auch nur den 2. Teil herausbekommen:

[mm] DV(w_0,a,w_1,a'=\infty)=\bruch{w_0-a}{w_1-a}=|ln(\bruch{a+it_0-a}{a+it_1-a}=|ln\bruch{it_0}{it_1}|=|ln\bruch{t_0}{t_1}| [/mm]

kann mir da jemand einen tipp gegeben für [mm] w_0 \not= w_1? [/mm]

zu 3) [mm] d(w_0,w_1)=|ln DV(w_0,a,w_1,a')|=|ln(\bruch{a-w_0}{a'-w_0}:\bruch{a-w_1}{a'-w_1})|=|\bruch{a-w_0}{a'-w_0}\cdot\bruch{a'-w_1}{a-w_1}|=|ln(\bruch{a-w_0}{a'-w_0})+ln(\bruch{a'-w_1}{a-w_1})|=|ln(f(w_0))+ln(f(w_1))|=|ln(f(w_0)\cdot f(w_1))|? [/mm]

es scheint nicht zu stimmen bzw. ich bin da bei diesem teil überfragt.

Ich bin für jeden Tipp dankbar, das zur weiterlösen diese aufgabe beiträgt.

        
Bezug
hyperbolische Abstand: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 27.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]