matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemehomogenes gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - homogenes gleichungssystem
homogenes gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homogenes gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 So 22.06.2008
Autor: schlumpfinchen123

Aufgabe
  Gelöst werden soll ein  lineares homogenes Gleichungssystem, mit der Matrix:

[mm] \pmat{ 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & -1\\ 0 & -1 & 0 & 0\\ -2 & 4 & -2 & 2 } [/mm]


Hallo,

kann mir jemand vielleicht helfen. Also, ich habe die Lösung vorliegen und in dieser steht folgendes:

Die Matrix wurde auf Treppennormalform gebracht, was ich nachvollziehen kann

[mm] \pmat{ 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 } [/mm]

Und dann steht dort, dass man die Lösung daran  ablesen könnte, welche wie folgt aussieht:

[mm] V_1 [/mm] =  [mm] \langle \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ -1\end{pmatrix}\rangle [/mm]

Also, das besagt doch, dass die Menge aller Vektoren, die durch Linearkombinationen dieser beiden Vektoren dargestellt werden kann die Lösungsmenge ist. Oder, liege ich da falsch?? Nun verstehe ich schon, wie man auf diese beiden Vektoren kommt. Denn die allgemeine Lösung lautet doch, dass alle Vektoren, die folgend Form habe die Lösung sind.

[mm] \begin{pmatrix} x_1 \\ 0 \\ x_3 \\ x_1 + x_3 \end{pmatrix} [/mm]

Aber jetzt frage ich mich, wieso man gerade diese beiden Vektoren ausgesucht hat. Und warum gerade zwei und nicht z.B. drei???

Vielen Dank schon mal und viele Grüße!  



        
Bezug
homogenes gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 So 22.06.2008
Autor: schachuzipus

Hallo schlumpfinchen,

>  Gelöst werden soll ein  lineares homogenes
> Gleichungssystem, mit der Matrix:
>  
> [mm]\pmat{ 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & -1\\ 0 & -1 & 0 & 0\\ -2 & 4 & -2 & 2 }[/mm]
>
>
> Hallo,
>
> kann mir jemand vielleicht helfen. Also, ich habe die
> Lösung vorliegen und in dieser steht folgendes:
>  
> Die Matrix wurde auf Treppennormalform gebracht, was ich
> nachvollziehen kann
>  
> [mm]\pmat{ 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 }[/mm] [ok]
>  
> Und dann steht dort, dass man die Lösung daran  ablesen
> könnte, welche wie folgt aussieht:
>  
> [mm]V_1[/mm] =  [mm]\langle \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ -1\end{pmatrix}\rangle[/mm] [ok]
>  
> Also, das besagt doch, dass die Menge aller Vektoren, die
> durch Linearkombinationen dieser beiden Vektoren
> dargestellt werden kann die Lösungsmenge ist.

Ja

> Oder, liege  ich da falsch??

Nein ;-)

> Nun verstehe ich schon, wie man auf diese
> beiden Vektoren kommt. Denn die allgemeine Lösung lautet
> doch, dass alle Vektoren, die folgend Form habe die Lösung
> sind.
>
> [mm]\begin{pmatrix} x_1 \\ 0 \\ x_3 \\ x_1 + x_3 \end{pmatrix}[/mm]
>  
> Aber jetzt frage ich mich, wieso man gerade diese beiden
> Vektoren ausgesucht hat. Und warum gerade zwei und nicht
> z.B. drei???
>
> Vielen Dank schon mal und viele Grüße!  
>
>  

Ausgehend von der obigen Matrix in ZSF hast du mit den "verbleibenden" 2 Gleichungen in 4 Unbekannten 2 freie Parameter.

Aus Zeile 2 kannst du direkt ablesen: [mm] $x_2=0$ [/mm]

Die freien Parameter vergib für [mm] $x_3,x_4$ [/mm]

Setze [mm] $x_3=s, x_4=t$ [/mm] mit [mm] $s,t\in\IR$ [/mm]

Dann ist mit Zeile 1:

[mm] $1\cdot{}x_1+s-t=0$, [/mm] also [mm] $x_1=-s+t$ [/mm]

Dann ist ein allg. Lösungsvektor [mm] $\vec{x}=\vektor{x_1\\x_2\\x_3\\x_4}$ [/mm] von der Gestalt: [mm] $\vektor{-s+t\\0\\s\\t}=s\cdot{}\vektor{-1\\0\\1\\0}+t\cdot{}\vektor{1\\0\\0\\1}$ [/mm] mit [mm] $s,t\in\IR$ [/mm]

bzw. mit [mm] $\tilde{s}=-s$ [/mm] und [mm] $\tilde{t}=-t$ [/mm] (wenn s und t die gesamten reellen Zahlen durchlaufen, so auch [mm] $\tilde{s}$ [/mm] und [mm] $\tilde{t}$, [/mm] daher kann man das machen):

[mm] $\vec{x}=\tilde{s}\cdot{}\vektor{1\\0\\-1\\0}+\tilde{t}\cdot{}\vektor{-1\\0\\0\\-1}$ [/mm]

Also genau der Spann aus der Lösung


LG

schachuzipus

Bezug
                
Bezug
homogenes gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 So 22.06.2008
Autor: schlumpfinchen123

Danke schön und viele grüße aus bremen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]