matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemehomog LGS, ganzzahlige Lsg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - homog LGS, ganzzahlige Lsg
homog LGS, ganzzahlige Lsg < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homog LGS, ganzzahlige Lsg: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:44 Mi 19.01.2011
Autor: UNR8D

Aufgabe
Zeigen Sie. Ein lineares Gleichungssystem A*x=0 mit einer Koeffizientenmatrix A [mm] \in [/mm] M(m [mm] \times [/mm] n, [mm] \IR) [/mm] deren Elemente alle ganzzahlig sind, und einer nicht-trivialen Lösung besitzt immer eine Lösung x [mm] \in \IZ^n [/mm]

Hi,
es müsste ja genügen zu zeigen, dass es eine Lösung in [mm] \IQ^n [/mm] gibt. Mit dem Hauptnenner multipliziert wäre diese ja dann ganzzahlig.
Wenn ich mir eine fertig mit Gauß bearbeitete Matrix vorstelle bei der es sicher auch eine nichttriviale Lösung gibt ist klar, dass aus ganzzahligen Matrixelementen nichts irrationales werden kann.
Ich habe allerdings keinen wirklichen Plan wie ich das ganze einigermaßen wasserdicht aufschreiben soll.

Ist meine Idee überhaupt richtig und wie geht man sinnvoll vor wenn man das als Beweis darstellen soll?

Im Übrigen meine ich, dass die Aufgabe etwas unglücklich formuliert ist, sodass man auch die triviale Lösung als x [mm] \in \IZ^n [/mm] angeben könnte.
Aber ich möchte die Aufgabe schon gerne so bearbeiten, wie sie gedacht ist ;)

Vielen Dank für eure Mühe!

lg UNR8D

        
Bezug
homog LGS, ganzzahlige Lsg: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:00 Mi 19.01.2011
Autor: wieschoo

Na die Idee hast du ja schon erkannt. Wenn der Lösungsraum von [mm] $b_1,\ldots ,b_n$ [/mm] ausgespannt wird, dann ist jede Linearkombination von den Basisvektoren eine Lösung. Somit kannst du mit dem kgv jeden Vektor ganzzahlig machen.

Das auflösen nach der Gaußelimination ist Addition/Subtraktion und Mult/Division in [mm] $\IQ$. [/mm] Das ist ein Körper und der ist gegen soetwas abgeschlossen.


Bezug
                
Bezug
homog LGS, ganzzahlige Lsg: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 Do 20.01.2011
Autor: UNR8D

Hi,
danke für die Antwort.
Ich hab das jetzt auch mal so ungefähr aufgeschrieben. Mir ist immer so n klein wenig unwohl wenn ein "Beweis" nur aus (groben) Erklärungen besteht aber es ist ja zweifellos richtig und verständlich was gemeint ist.

lg UNR8D

Bezug
        
Bezug
homog LGS, ganzzahlige Lsg: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 21.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]