matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemehomog. lin. Gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - homog. lin. Gleichungssystem
homog. lin. Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homog. lin. Gleichungssystem: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:38 Mi 13.11.2013
Autor: jayw

Aufgabe
Bestimmen Sie die reellen Werte , für die das durch die Matrix
[mm] \begin{pmatrix} (1-\lambda) & 0 & 0 \\ 1 & -\lambda & 2\\ 3 & 2 & -\lambda \end{pmatrix} [/mm]
gegebene homogene lineare Gleichungssystem nicht-triviale Lösungen besitzt. Geben Sie für jedes solche [mm] \lambda [/mm] eine nicht-triviale Lösung an.


Da wir Determinanten noch nicht in der Vorlesung hatten und ich mich selbst weitergebildet habe, wüsste ich gerne ob ich die Aufgabe korrekt angegangen bin :-)

Ich habe also zunächst die Determinante der geg. Matrix bestimmt (aufgrund der "Nullen" in der ersten Zeile fallen ja die anderen Ausdrücke weg, wenn ich das richtig gemacht habe):

[mm] 1-\lambda \begin{vmatrix}-\lambda & 2 \\2 & -\lambda\end{vmatrix}= [/mm]

[mm] (1-\lambda)(x^2-4) [/mm]

Sind nun die gesuchten reellen Werte für [mm] \lambda: [/mm]
[mm] \IL={-2,1,2} [/mm]
?

        
Bezug
homog. lin. Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Mi 13.11.2013
Autor: fred97


> Bestimmen Sie die reellen Werte , für die das durch die
> Matrix
>  [mm]\begin{pmatrix} (1-\lambda) & 0 & 0 \\ 1 & -\lambda & 2\\ 3 & 2 & -\lambda \end{pmatrix}[/mm]
>  
> gegebene homogene lineare Gleichungssystem nicht-triviale
> Lösungen besitzt. Geben Sie für jedes solche [mm]\lambda[/mm]
> eine nicht-triviale Lösung an.
>  
> Da wir Determinanten noch nicht in der Vorlesung hatten und
> ich mich selbst weitergebildet habe,


Das ist lobenswert !

> wüsste ich gerne ob
> ich die Aufgabe korrekt angegangen bin :-)
>  
> Ich habe also zunächst die Determinante der geg. Matrix
> bestimmt (aufgrund der "Nullen" in der ersten Zeile fallen
> ja die anderen Ausdrücke weg, wenn ich das richtig gemacht
> habe):
>  
> [mm]1-\lambda \begin{vmatrix}-\lambda & 2 \\2 & -\lambda\end{vmatrix}=[/mm]

Hier hast Du Klammern vergessen, also:

[mm](1-\lambda )\begin{vmatrix}-\lambda & 2 \\2 & -\lambda\end{vmatrix}=[/mm]


>  
> [mm](1-\lambda)(x^2-4)[/mm]

Bleiben wir doch beim [mm] \lambda [/mm] (x ist zwar auch schön, aber ....)


>  
> Sind nun die gesuchten reellen Werte für [mm]\lambda:[/mm]
>  [mm]\IL={-2,1,2}[/mm]

Ja, aber die Mengenklammern .....

     [mm]\IL=\{-2,1,2\}[/mm]

FRED

>  ?


Bezug
                
Bezug
homog. lin. Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:56 Mi 13.11.2013
Autor: jayw


> > Bestimmen Sie die reellen Werte , für die das durch die
> > Matrix
>  >  [mm]\begin{pmatrix} (1-\lambda) & 0 & 0 \\ 1 & -\lambda & 2\\ 3 & 2 & -\lambda \end{pmatrix}[/mm]
>  
> >  

> > gegebene homogene lineare Gleichungssystem nicht-triviale
> > Lösungen besitzt. Geben Sie für jedes solche [mm]\lambda[/mm]
> > eine nicht-triviale Lösung an.
>  >  
> > Da wir Determinanten noch nicht in der Vorlesung hatten und
> > ich mich selbst weitergebildet habe,
>
>
> Das ist lobenswert !
>  
> > wüsste ich gerne ob
> > ich die Aufgabe korrekt angegangen bin :-)
>  >  
> > Ich habe also zunächst die Determinante der geg. Matrix
> > bestimmt (aufgrund der "Nullen" in der ersten Zeile fallen
> > ja die anderen Ausdrücke weg, wenn ich das richtig gemacht
> > habe):
>  >  
> > [mm]1-\lambda \begin{vmatrix}-\lambda & 2 \\2 & -\lambda\end{vmatrix}=[/mm]
>  
> Hier hast Du Klammern vergessen, also:
>  
> [mm](1-\lambda )\begin{vmatrix}-\lambda & 2 \\2 & -\lambda\end{vmatrix}=[/mm]

Ja, danke!

>
> >  

> > [mm](1-\lambda)(x^2-4)[/mm]
>  
> Bleiben wir doch beim [mm]\lambda[/mm] (x ist zwar auch schön, aber
> ....)

Natürlich  [mm](1-\lambda)(\lambda^2-4)[/mm]
da hat sich auch auf dem Papier plötzlich ein hässliches [mm] \lambda [/mm] als x getarnt :-)

>
> >  

> > Sind nun die gesuchten reellen Werte für [mm]\lambda:[/mm]
>  >  [mm]\IL={-2,1,2}[/mm]
>  
> Ja, aber die Mengenklammern .....

Ja, die wurden durch das Programm unterschlagen ;)
  

> [mm]\IL=\{-2,1,2\}[/mm]
>  
> FRED
>  >  ?

Danke dir!


Bezug
                
Bezug
homog. lin. Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Mi 13.11.2013
Autor: jayw

Eine Frage noch:

Ist diese Notation mathematisch korrekt?

[mm]\begin{pmatrix} (1-\lambda) & 0 & 0 \\ 1 & -\lambda & 2\\ 3 & 2 & -\lambda \end{pmatrix}=A[/mm]

[mm] $det(A)=(1-\lambda )\begin{vmatrix}-\lambda & 2 \\2 & -\lambda\end{vmatrix}=(1-\lambda)(\lambda^2-4)$ [/mm]


Bezug
                        
Bezug
homog. lin. Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mi 13.11.2013
Autor: angela.h.b.


> Eine Frage noch:

>

> Ist diese Notation mathematisch korrekt?

>

> [mm]\begin{pmatrix} (1-\lambda) & 0 & 0 \\ 1 & -\lambda & 2\\ 3 & 2 & -\lambda \end{pmatrix}=A[/mm]

>

> [mm]det(A)=(1-\lambda )\begin{vmatrix}-\lambda & 2 \\2 & -\lambda\end{vmatrix}=[/mm]
> [mm][mm](1-\lambda)(\lambda^2-4)[/mm]

Hallo,

bis auf das mm, welches Dir das Forum geschenkt hat, ist alles ganz bezaubernd.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]