matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometriehomöomorphismen angeben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - homöomorphismen angeben
homöomorphismen angeben < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homöomorphismen angeben: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:15 Do 06.06.2013
Autor: Schachtel5

Hi wenn ich Homöomorphie von Mengen zeigen muss habe ich ziemlich Probleme mir den entsprechenden Homöomorphismus zu überlegen und will das etwas üben.
Ich habe zB. hier die Aufgabe

1. zu zeigen, dass [mm] \mathbb{R}^n/(\mathbb{R}^n\backslash B_1(0)) [/mm] und [mm] \overline{B}_1(0)/(\overline{B}_1(0)\backslash B_1(0)) [/mm] homöomorph sind, wobei [mm] B_1(0) [/mm] Ball mit Radius <1 um 0 ist.

[mm] 2.\sim [/mm] sei die Äquivalenzrelation auf [mm] \mathbb{R}^{n+1}\backslash \{0\} [/mm] die durch die [mm] \mathbb{R}\backslash \{0\} [/mm] - Wirkung entstanden ist, dh. [mm] x\sim [/mm] x' [mm] \gdw \exists \lambda \in \mathbb{R}\backslash \{0\} [/mm] mit [mm] \lambda [/mm] *x=x'.
Nun ist [mm] H\subset \mathbb{R}^{n+1}\backslash \{0\} [/mm] die Halbsphäre [mm] H=\{x\in S^n :x_1 \ge 0\}, [/mm] wobei [mm] S^n=\{x\in \mathbb{R}^{n+1}: \abs{x}=1\} \subset \mathbb{R}^{n+1}. [/mm]
Und [mm] \sim_H [/mm] sei die Einschränkung von [mm] \sim [/mm] auf H, d.h. für h,h' [mm] \in [/mm] H gilt dass [mm] h\sim_H [/mm] h' [mm] \gdw h\sim [/mm] h'.
zu zeigen ist, dass [mm] H/\sim_H [/mm] homöomorph zu [mm] \mathbb{R}\mathbb{P}^n [/mm] ist.

Zu meinen Versuchen:
Bei der 1. habe ich mir das für n=1 mal aufgemalt. Ich habe einmal dann für  [mm] \mathbb{R}^1/(\mathbb{R}^1\backslash [/mm] (-1,1)), bedeutet das jetzt genau dass x , [mm] y\in \mathbb{R}^1 [/mm] äquivalent sind, wenn wenn sie außerhalb von (-1,1) liegen, also das alles außerhalb von (-1,1) identifiziert wird? Was wäre das geometrisch?
Und [mm] \overline{B}_1(0)/(\overline{B}_1(0)\backslash B_1(0)) [/mm] wäre dann für n=1 [mm] [0,1]/\{1,-1\}. [/mm]

und zur 2. kenne ich nur den Homöomorphismus  [mm] S^n\to \mathbb{R}\mathbb{P}^n [x]\mapsto [x\parallel x\parallel [/mm] ]. Ich dachte mir, dass man das irgendwie damit verknüpfen kann. Winkel halbieren bekäme man mit der Wurzel.

Wäre super, wenn ihr mir da helfen könnt, ich will das wirklich unbedingt lernen.
Liebe Grüße

        
Bezug
homöomorphismen angeben: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Fr 14.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]