matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisholomorphe funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - holomorphe funktion
holomorphe funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

holomorphe funktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:51 Mi 13.01.2010
Autor: Phecda

hallo
im anhang befindet sich die aufgabe

[a][Bild Nr. 1 (fehlt/gelöscht)]

also die a ist klar,
f erfüllt die cauchy-riemannschen dgl.

jetzt zur b) ich hab da iwie ewig rumgerechnet, aber bin nicht weitgekommen:
d(g(dx+idy)) muss null sein. Wenn ich jetzt auch g = u + iv schreibe und dann das differential von g bilde bekomme ich ja nix gescheites raus, weil ich ja irgendwie die abhängigkeit zu f brauche...
alternativ
d(gdz) = dg*dz=fdz*dz .. was bringt mir das?
ich hab irgendwie nicht so richtig eine idee ...



        
Bezug
holomorphe funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:51 Mi 13.01.2010
Autor: Phecda

hier das bild
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
holomorphe funktion: Aufgabenstellung abtippen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:01 Mi 13.01.2010
Autor: Loddar

Hallo Phecda!


Was hält Dich davon ab, die Aufgabenstellung hier direkt abzutippen?

Zumal die Angabe Deinerseits zu dem Bild "Ich bin der Urheber" in meinen Augen sehr gewagt scheint.


Gruß
Loddar


Bezug
                        
Bezug
holomorphe funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:13 Mi 13.01.2010
Autor: Phecda

Aufgabe
man identifiziere [mm] \IC [/mm] mit [mm] \IR^2 [/mm] via der Abbildung x + iy -> (x,y).
Sei U [mm] \subset \IC [/mm] offen und f = [mm] f_{1} [/mm] + [mm] if_{2}: [/mm] U -> [mm] \IC [/mm] eine Funktion mit reell differenzierbaren Funktionen [mm] f_{1}, f_{2}. [/mm] Wir nennen f holomorph, falls die Differentialform
w = f(dx + idy) geschlossen ist, also dw = 0.

Ist f eine holomorphe Funktion, so gilt für f1 und f2 die Cauchyriemanschen DGL.

Zeige: Sei f: U -> [mm] \IC [/mm] holomorph und g: U -> [mm] \IR [/mm] eine Funktion mit dg = f(dx+idy), so ist auch g holomorph.


Das ist die Aufgabe... meine anfänglichen gedanken habe ich ja oben gepostet ... danke

Bezug
                                
Bezug
holomorphe funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 16.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]