matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisholomorphe Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - holomorphe Funktionen
holomorphe Funktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

holomorphe Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Mi 03.12.2008
Autor: gnom

Aufgabe
Es gibt keine holomorphe Funktion f:C->C mit der Eigenschaft

f(C)={z Element C: Im z>0, Re z>=}

Hallo an alle,

meine Fragen zu dieser Aufgabe.
Es ist für jede holomorphe Funktion f:C->C durch g:C->C ; z-> exp(-f(z)) eine holomorphe Funktion gegeben. Warum ist das so? und Warum wähle ich hier z-> exp(-f(z))  und nicht z-> exp(+f(z)) ?

wenn ich mir jetzt [mm]|g(z)| = | e^{-f(z)}|= e^{-Re f(z)}[/mm] anschaue, dann kann ich [mm]e^{-Re f(z)}<=1[/mm]  abschätzen.
Aber warum ist [mm]e^{-Re f(z)}[/mm]  kleiner gleich 1. das verstehe ich nicht?

Daraus folgt dann dass, das Bild von g beschränkt ist.

Nach Satz von Liouville ist g dann konstant.

Hoffe ihr könnt mir helfen.

Grüße gnom

        
Bezug
holomorphe Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mi 03.12.2008
Autor: fred97


> Es gibt keine holomorphe Funktion f:C->C mit der
> Eigenschaft
>  
> f(C)={z Element C: Im z>0, Re z>=}

Was steht hier ? Re z [mm] \ge [/mm] 0 ? Wenn ja, so ist die Frage einfach zu beantworten:

Die Menge { z [mm] \in \IC [/mm] : Imz>0, Re z [mm] \ge [/mm] 0} ist nicht offen.

Für eine holomorphe Fkt. f [mm] \IC [/mm] --> [mm] \IC [/mm] ist aber [mm] f(\IC) [/mm] offen oder einelementig.


FRED


>  Hallo an alle,
>  
> meine Fragen zu dieser Aufgabe.
> Es ist für jede holomorphe Funktion f:C->C durch g:C->C ;
> z-> exp(-f(z)) eine holomorphe Funktion gegeben. Warum ist
> das so? und Warum wähle ich hier z-> exp(-f(z))  und nicht
> z-> exp(+f(z)) ?
>  
> wenn ich mir jetzt [mm]|g(z)| = | e^{-f(z)}|= e^{-Re f(z)}[/mm]
> anschaue, dann kann ich [mm]e^{-Re f(z)}<=1[/mm]  abschätzen.
> Aber warum ist [mm]e^{-Re f(z)}[/mm]  kleiner gleich 1. das verstehe
> ich nicht?
>  
> Daraus folgt dann dass, das Bild von g beschränkt ist.
>  
> Nach Satz von Liouville ist g dann konstant.
>  
> Hoffe ihr könnt mir helfen.
>  
> Grüße gnom


Bezug
                
Bezug
holomorphe Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Mi 03.12.2008
Autor: gnom

Sorry, die Angabe heißt: Es gibt keine holomorphe Funktion mit der Eigenschaft: f(C)={z Element C: Im z>0, Re z>0}

meine Fragen zu dieser Aufgabe.
Es ist für jede holomorphe Funktion f:C->C durch g:C->C ;  z-> exp(-f(z)) eine holomorphe Funktion gegeben. Warum ist
das so? und Warum wähle ich hier z-> exp(-f(z))  und nicht
z-> exp(+f(z)) ?

>  >  

wenn ich mir jetzt [mm]|g(z)| = | e^{-f(z)}|= e^{-Re f(z)}[/mm]
anschaue, dann kann ich [mm]e^{-Re f(z)}<=1[/mm]  abschätzen.
Aber warum ist [mm]e^{-Re f(z)}[/mm]  kleiner gleich 1. das verstehe
ich nicht?
  
Daraus folgt dann dass, das Bild von g beschränkt ist.
  
Nach Satz von Liouville ist g dann konstant.

>  >  

Hoffe ihr könnt mir helfen.

> > Grüße gnom  


Bezug
                        
Bezug
holomorphe Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Mi 03.12.2008
Autor: fred97


> Sorry, die Angabe heißt: Es gibt keine holomorphe Funktion
> mit der Eigenschaft: f(C)={z Element C: Im z>0, Re z>0}
>  
> meine Fragen zu dieser Aufgabe.
> Es ist für jede holomorphe Funktion f:C->C durch g:C->C ;  
> z-> exp(-f(z)) eine holomorphe Funktion gegeben. Warum ist
> das so?

Die verkettung holomorpher Funktionen ist holomorph !

und Warum wähle ich hier z-> exp(-f(z))  und nicht

> z-> exp(+f(z)) ?


Weil Du mit der Wahl g(z) = [mm] e^{-f(z)} [/mm] die Aufgabe lösen kannst !!!!!



>  >  >  
> wenn ich mir jetzt [mm]|g(z)| = | e^{-f(z)}|= e^{-Re f(z)}[/mm]
> anschaue, dann kann ich [mm]e^{-Re f(z)}<=1[/mm]  abschätzen.
> Aber warum ist [mm]e^{-Re f(z)}[/mm]  kleiner gleich 1. das verstehe
> ich nicht?



Wir haben doch angenommen: f(C)={z Element C: Im z>0, Re z>0},

also ist Ref(z) > 0 für jedes z, somit -Ref(z) < 0 für jedes z, daher |g(z)| < 1 für jedes z. g ist also beschränkt



FRED





>    
> Daraus folgt dann dass, das Bild von g beschränkt ist.
>    
> Nach Satz von Liouville ist g dann konstant.
>  >  >  
> Hoffe ihr könnt mir helfen.
>  
> > > Grüße gnom  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]