matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisholomorphe Funktione
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - holomorphe Funktione
holomorphe Funktione < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

holomorphe Funktione: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Mi 07.06.2006
Autor: susi2006

Hallo!

Laut Satz gilt:

Sei U ein Gebiet und [mm] f:U\to\IC [/mm] stetig, dann besitzt f eine Stammfunktion, die holomorph ist, mit [mm] F:U\to\IC [/mm] was gleichbedeutend ist, also [mm] \gdw [/mm]

[mm] \integral_{\gamma}^{}{f(z) dz} [/mm] = 0 für jede geschlossene stetige Kurve [mm] \gamma [/mm] in U

Meine Frage: Wenn ich die Funktion [mm] f(z)=\overline{z} [/mm] betrachte. Diese Funktion ist auf ganz [mm] \IC [/mm] stetig und müsste somit eine holomorphe Stammfunktion besitzen.
Aber [mm] \integral_{\gamma}^{}{\overline{z} dz} [/mm] ist doch nicht für jede geschlossene Kurve = 0 und zudem ist ja eine holomorphe Funktion unendlich oft diffbar.
Wenn ich die Stammfunktion von [mm] f(z)=\overline{z} [/mm] komplex differenziere, also [mm] F'(z)=f(z)=\overline{z}. [/mm]
Aber [mm] F''(z)=(\overline{z})' [/mm] ist nicht komplex diffbar!!

Ich weiß nicht, wo mein Fehler ist. Vielleicht kann mir jemand dabei helfen.
Vielen Dank!

        
Bezug
holomorphe Funktione: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Mi 07.06.2006
Autor: t.sbial


> Hallo!
>  
> Laut Satz gilt:
>  
> Sei U ein Gebiet und [mm]f:U\to\IC[/mm] stetig, dann besitzt f eine
> Stammfunktion, die holomorph ist, mit [mm]F:U\to\IC[/mm] was
> gleichbedeutend ist, also [mm]\gdw[/mm]
>  
> [mm]\integral_{\gamma}^{}{f(z) dz}[/mm] = 0 für jede geschlossene
> stetige Kurve [mm]\gamma[/mm] in U.

Dieses was gleichbedeutend ist sollte man weglassen das ist hier fehl am Platz. Der Satz geht also so:
Sei U ein Gebiet und [mm]f:U\to\IC[/mm] stetig, dann besitzt f eine
Stammfunktion, die holomorph ist, mit [mm]F:U\to\IC[/mm] genau dann wenn  [mm]\integral_{\gamma}^{}{f(z) dz}[/mm] = 0 für jede geschlossene stetige Kurve [mm]\gamma[/mm] in U.
Die Stammfunktion kann dann definiert werden  durch F(z)= [mm] \integral_{a}^{z}{f(x) dx} [/mm] da das Integral ja wegunabhängig ist.
D.h. also es reicht nicht das f auf U stetig ist damit eine Stammfunktion existiert. Wie dein Bsp. ja auch zeigt.
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]