holomorphe Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | sei [mm] f:\IC\to\IC [/mm] eine holomorphe funktion. überprüfen sie die funktion [mm] g:=\IC\to\IC [/mm] mit
[mm] g:=\overline{f(\overline{z})} [/mm] auf holomorphie. |
hi!
ich habe bei der aufgabe es mit den cauchy-riemann-dgl. versucht. bin aber gescheitert. vielleicht kann mir jemand ein tip geben, wie man so eine aufgabe anpackt.
danke!
ich habe diese frage in keinem forum auf anderen internetseiten gestellt.
|
|
|
|
Wenn dir bekannt ist, daß jede holomorphe Funktion [mm]f: \ \mathbb{C} \to \mathbb{C}[/mm] eine Potenzreihenentwicklung um [mm]0[/mm] besitzt, die [mm]f[/mm] in ganz [mm]\mathbb{C}[/mm] darstellt, ist die Aufgabe trivial. Es geht aber auch ohne dieses Wissen direkt mit der Definition der Holomorphie. Da der Definitionsbereich von [mm]f[/mm] ganz [mm]\mathbb{C}[/mm] ist, sind Holomorphie und komplexe Differenzierbarkeit dasselbe. Betrachte daher für komplexes [mm]h \neq 0[/mm] den Differenzenquotienten von [mm]g[/mm] an der Stelle [mm]z[/mm]:
[mm]\frac{1}{h} \left( g(z+h) - g(z) \right) = \frac{1}{h} \left( \overline{f \left( \overline{z+h} \right)} - \overline{f \left( \overline{z} \right)} \right) = \overline{ \frac{1}{\overline{h}} \left( f \left( \overline{z} + \overline{h} \right) - f \left( \overline{z} \right) \right) }[/mm]
Unter der großen Überstreichung zuletzt steht jetzt aber der Differenzenquotient der Funktion [mm]f[/mm] an der Stelle [mm]\overline{z}[/mm], wobei [mm]h[/mm] durch [mm]\overline{h}[/mm] ersetzt ist. Das ist aber unproblematisch, da die Grenzübergänge [mm]h \to 0[/mm] und [mm]\overline{h} \to 0[/mm] sich gegenseitig bedingen.
Was passiert also oben für [mm]h \to 0[/mm]?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:27 Fr 07.07.2006 | Autor: | marcstein |
hallo leopold!
für h gegen 0 bekomme ich gerade die komplexe ableitung von [mm] \overline{f(\overline{z})}=g(z). [/mm] somit ist g auf ganz [mm] \IC [/mm] holomorph!
vielen dank für den hinweis!!
|
|
|
|