matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenherleitung von e
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - herleitung von e
herleitung von e < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

herleitung von e: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 So 23.08.2009
Autor: AriR

hey leute habe mal eine kleine frage zu der herleitung der zahl e.
angenommen man nimmt den weg über die steigung der e-fkt an der stelle (0,1). die tangente an dem punkt muss gerade die steigung 1 haben.

demnach gilt für kleine x: [mm] e^x\approx1+x [/mm] also für große n gilt dann ziemlich genau [mm] e^\bruch1n\approx1+\bruch1n. [/mm]
soweit so gut, nur jetzt potenziert man ja beide seiten noch mit n und bekommt dann [mm] e\approx(1+\bruch1n)^n [/mm] für große n.

was ich nicht verstehe ist folgendes: wenn ich [mm] e^x [/mm] durch 1+x approximiere, dann gilt das ja nur für sehr kleine x was bei [mm] e^\bruch1n\approx1+\bruch1n [/mm] für große n gegeben ist (da ich die funktion ja genau bei dem punkt 0 an dem sie lin.approxmiert wird betrachte)
potenziere ich aber nun beide seiten von [mm] e^\bruch1n\approx1+\bruch1n [/mm] mit n betrachte ich ja sozusagen den punkt bei x=1 [mm] (e^1=e) [/mm] der ja sehr weit weg von der 0 ist. ist die approximation dann überhaupt noch genau genug?
wenn ja, warum?

gruß und schönen sonntag :)

        
Bezug
herleitung von e: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 So 23.08.2009
Autor: MatheOldie


> hey leute habe mal eine kleine frage zu der herleitung der
> zahl e.
>  angenommen man nimmt den weg über die steigung der e-fkt
> an der stelle (0,1). die tangente an dem punkt muss gerade
> die steigung 1 haben.
>  

Hallo, ich hake hier mal ein: Wenn du die Zahl e herleiten sollst, darfst du sie doch nicht schon benutzen, indem du die Steigung der e-Funktion nimmst?

Die Frage ist so also unklar gestellt. Präzisiere bitte mal: Was ist bekannt und darf benutzt werden, was soll gezeigt/ hergeleitet werden?

Gruß, MatheOldie


Bezug
                
Bezug
herleitung von e: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 So 23.08.2009
Autor: AriR

die zahl e ist unbekannt und soll hergeleitet werden. ich glaube ich bin auch selber schon etwas weitergekommen:


gesucht ist eine zahl e für die gilt

[mm] e^\bruch1n\approx1+\bruch1n [/mm] und dieser ausdruck ist äquvivalent zu [mm] e\approx(1+\bruch1n)^n [/mm]

also die zahl e die [mm] e^\bruch1n\approx1+\bruch1n [/mm] erfüllt, ist exakt die selbe zahl die [mm] e\approx(1+\bruch1n)^n [/mm] erfüllt (da [mm] f(x)=x^n [/mm] bijektiv ist)

so ist das doch gemeint oder?

Bezug
                        
Bezug
herleitung von e: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 So 23.08.2009
Autor: leduart

Hallo
man kann e herleiten aus f'(x)=f(x) und f"(0)=1
indem man schrittweise zu f(1)=e per Definition loslaeuft.
f(1/n)=f(0)+f'(0)*1/n=1+1/n
[mm] f(2/n)=f(1/n)+f'(1/n)*1/n)=1+1/n+(1+1/n)*1/n=(1+1/n)^2 [/mm]
usw. f(3/n)...f(n/n)
und du hast [mm] f(n/n)=f(1)=(1+1/n)^n [/mm]
und mit lin ngegen [mm] \infty [/mm] dann e
dabei wierd [mm] f'(a^x)=k*a^x [/mm] vorrausgesetzt, was leicht zu zeigen ist, und nur a so bestimmt, dass k=1 ist.
ich denke ,dass das auch der historische Weg Eulers war auf e zu kommen.
Gruss leduart

Bezug
                                
Bezug
herleitung von e: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 So 23.08.2009
Autor: AriR

jo besten danke  leute :)


ist anschaulich und verständlich

Bezug
                                
Bezug
herleitung von e: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 Mo 24.08.2009
Autor: AriR

eine frage bitte noch


würde ich zB [mm] a=(1+\bruch{k}n)^n [/mm] berechne für [mm] n\to\infty [/mm]

bestimme ich a so, dass  [mm] f'(x)=k*a^x [/mm] wobei [mm] f(x)=a^x [/mm]

oder?

gruß

Bezug
                                        
Bezug
herleitung von e: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Mo 24.08.2009
Autor: Al-Chwarizmi


> eine frage bitte noch
>  
>
> würde ich zB [mm]a=(1+\bruch{k}n)^n[/mm] berechne für [mm]n\to\infty[/mm]
>  
> bestimme ich a so, dass  [mm]f'(x)=k*a^x[/mm] wobei [mm]f(x)=a^x[/mm]
>  
> oder?
>  
> gruß


Nachdem geklärt ist, dass  [mm] \limes_{x\to\infty}\left(1+\frac1x\right)^x=e [/mm]
(für [mm] x\in\IN [/mm] , aber sogar auch für [mm] x\in\IQ [/mm]
oder sogar [mm] x\in\IR), [/mm] kannst du dieses Ergebnis
für die neue Limesberechnung verwenden.
Setze dazu einfach die Terme

      [mm] \left(1+\frac{k}n\right) [/mm] und [mm] \left(1+\frac1x\right) [/mm]

einander gleich, mit anderen Worten  [mm] x:=\frac{n}k [/mm] .
Nach dieser Substitution berechnest du den
entstehenden Grenzwert für [mm] x\to\infty [/mm] .


LG     Al-Chw.


Bezug
                                        
Bezug
herleitung von e: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Mo 24.08.2009
Autor: leduart

Hallo

Warum machst du nicht einfach dasselbe, was ich dir fuer f'(x)=f(x) f'(0)=k vorgeschlagen hab, dann faendest du selbst die Antwort. es ist nie gut zu fragen, bevor man selber was probiert hat. Du willst doch lernen, nicht ich.
Gruss leduart

Bezug
                                                
Bezug
herleitung von e: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:26 Mo 24.08.2009
Autor: AriR

habe ich doch gemacht und bin zu dem ergebniss gekommen und wollte jetzt eigentlich nur sicher gehen ob das so richtig ist :)

Bezug
        
Bezug
herleitung von e: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 So 23.08.2009
Autor: Al-Chwarizmi


> hey leute habe mal eine kleine frage zu der herleitung der
> zahl e.
>  angenommen man nimmt den weg über die steigung der e-fkt
> an der stelle (0,1). die tangente an dem punkt muss gerade
> die steigung 1 haben.
>  
> demnach gilt für kleine x: [mm]e^x\approx1+x[/mm] also für große
> n gilt dann ziemlich genau [mm]e^\bruch1n\approx1+\bruch1n.[/mm]
> soweit so gut, nur jetzt potenziert man ja beide seiten
> noch mit n und bekommt dann [mm]e\approx(1+\bruch1n)^n[/mm] für
> große n.
>  
> was ich nicht verstehe ist folgendes: wenn ich [mm]e^x[/mm] durch
> 1+x approximiere, dann gilt das ja nur für sehr kleine x
> was bei [mm]e^\bruch1n\approx1+\bruch1n[/mm] für große n gegeben
> ist (da ich die funktion ja genau bei dem punkt 0 an dem
> sie lin.approxmiert wird betrachte)

So weit korrekt.

>  potenziere ich aber nun beide seiten von
> [mm]e^\bruch1n\approx1+\bruch1n[/mm] mit n betrachte ich ja
> sozusagen den punkt bei x=1 [mm](e^1=e)[/mm] der ja sehr weit weg
> von der 0 ist.

Das stimmt so nicht. Es wird hier ja nur aus der
(im Limes für [mm] n\to\infty [/mm] exakten) approximativen Gleichung
durch die Umformung "beidseitig mit n potenzieren"
eine neue gemacht, welche auch nur für sehr
grosse Werte von n annähernd zutrifft. Für n=1
(und also x=1) stimmt sie offenbar bei weitem
nicht, denn [mm] e^{\bruch11}=e=2.718... [/mm]  und [mm] 1+\bruch11=2.0 [/mm]  .


LG    Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]