matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikherleitung Schwingungsdauer
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - herleitung Schwingungsdauer
herleitung Schwingungsdauer < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

herleitung Schwingungsdauer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 Fr 17.09.2010
Autor: Kuriger

Hallo und guten Nachmittag

Ich möchte die Schwingungsdauer des mathematischen Pendels herleiten, die ja wie folgt lautet
T = [mm] 2\pi [/mm] * [mm] \wurzel{\bruch{l}{g}} [/mm]

Eine Harmonische Schwingung kann ich ja als Funktion in Abhängigkeit der Zeit wie folgt ausdrücken:


x(t) = [mm] x_0 [/mm] * sin ω*t
[mm] x_0: [/mm] Amplitude

1. Ableitung
[mm] \dot [/mm] x(t) = [mm] x_0 [/mm] * ω* cos(ω*t) =

2. Ableitung
[mm] \dot \dot [/mm] x(t) = - [mm] x_0 [/mm] * ω^2 * sin(ω*t)

Die Differentialgleichung des mathematischen Pendel ist:
J*Winkelbeschleunigung = -g * sin(Winkel)

Tangentialbeschleunigung = r*Winkelbeschleunigung
Bahngeschwindigkeit = r*Winkelgeschwindigkeit
Ich komme nicht weiter wie ich das machen soll, danke


        
Bezug
herleitung Schwingungsdauer: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Fr 17.09.2010
Autor: Kroni

Hi,

die allgemein Schwingungsgleichung lautet doch (ohne Reibung)

[mm] $m\ddot{x} [/mm] + [mm] \omega^2 [/mm] x = 0$

Wenn wir das jetzt fuer das Pendel uebertragen wollen, steht da sowas (anstatt $x$ betrachten wir nun den Auslenkungswinkel [mm] $\varphi$) [/mm]

In der Punktmechanik gilt doch:

[mm] $m\ddot{x} [/mm] = [mm] \sum \text{Kraefte}$ [/mm]

Bei den Drehbewegungen muss dann die Masse durch das Traegheitsmoment ersetzt werden, $x$ durch den Winkel [mm] $\varphi$ [/mm] und die Summe aller Kraefte ist gleich der Summe aller wirkenden Drehmomente:

[mm] $I\ddot{\varphi} [/mm] =  [mm] \vec{M} [/mm] $

Wenn wir jetzt nen Massepunkt haben, wie gross ist dann $I$? Und was ist das wirkende Drehmoment?

Wenn du dir das vernuenftig hinschreibst, und dann die Naehrung fuer kleine Auslenkungen [mm] $\sin\varphi \approx \varphi$ [/mm] machst, wirst du auf eine DGL der Form

[mm] $\ddot{\varphi} [/mm] + [mm] \omega^2 \varphi [/mm] = 0$

kommen.

Dann kannst du sofort [mm] $\omega^2$ [/mm] ablesen, und dann mit [mm] $\omega [/mm] = [mm] \frac{2\pi}{T}$ [/mm] die Schwingungsdauer ablesen.

LG

Kroni


Bezug
                
Bezug
herleitung Schwingungsdauer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Fr 17.09.2010
Autor: Kuriger

Hallo, Danke für die Antwort

> [mm]m\ddot{x} + \omega^2 x = 0[/mm]

was ist [mm] \omega^2 [/mm] x? ich verstehe das nicht

Auf meinen Blatt lese ich was anderes.

[mm] J*\ddot{\varphi} [/mm] = - g * sin [mm] ({\varphi}) [/mm]
[mm] {\varphi} [/mm] = sin [mm] ({\varphi}) [/mm]
J = m * [mm] l^2 [/mm] (für mathematisches Pendel nur Steineranteil, da Punktmasse)

m * [mm] l^2*\ddot{\varphi} [/mm] = - g * [mm] {\varphi} [/mm]

Wie du bereits geschrieben hast:
[mm] \omega [/mm] = [mm] \frac{2\pi}{T} [/mm]

Doch in meiner Gleichung habe ich ja nirgends [mm] \omega [/mm] (Winkelgeschwindigkeit) , so dass ich diesen Ausdruck einsetzen könnte?

α= [mm] \bruch{\omega }{t} [/mm]
[mm] \omega [/mm] = α * t

Aber eben du hast ja eine andere Ausgangsgleichung genommen

Gruss Kuriger

>  
> Wenn wir das jetzt fuer das Pendel uebertragen wollen,
> steht da sowas (anstatt [mm]x[/mm] betrachten wir nun den
> Auslenkungswinkel [mm]\varphi[/mm])
>
> In der Punktmechanik gilt doch:
>  
> [mm]m\ddot{x} = \sum \text{Kraefte}[/mm]
>  
> Bei den Drehbewegungen muss dann die Masse durch das
> Traegheitsmoment ersetzt werden, [mm]x[/mm] durch den Winkel [mm]\varphi[/mm]
> und die Summe aller Kraefte ist gleich der Summe aller
> wirkenden Drehmomente:
>  
> [mm]I\ddot{\varphi} = \vec{M}[/mm]
>  
> Wenn wir jetzt nen Massepunkt haben, wie gross ist dann [mm]I[/mm]?
> Und was ist das wirkende Drehmoment?
>  
> Wenn du dir das vernuenftig hinschreibst, und dann die
> Naehrung fuer kleine Auslenkungen [mm]\sin\varphi \approx \varphi[/mm]
> machst, wirst du auf eine DGL der Form
>  
> [mm]\ddot{\varphi} + \omega^2 \varphi = 0[/mm]
>
> kommen.
>  
> Dann kannst du sofort [mm]\omega^2[/mm] ablesen, und dann mit [mm]\omega = \frac{2\pi}{T}[/mm]
> die Schwingungsdauer ablesen.
>  
> LG
>  
> Kroni
>  


Bezug
                        
Bezug
herleitung Schwingungsdauer: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Fr 17.09.2010
Autor: Kroni

Hallo,

die Schwingungsgleichung habe ich so hingeschrieben, weil das die einfachste Form ist, die man fuer eine Schwingung hinschrieben kann. Was nun genau das [mm] $\omega^2$ [/mm] ist, muss man halt im speziellen Rausfinden.

Beispiel:

Feder:

[mm] $m\ddot{x} [/mm] + kx = 0$ also

[mm] $\ddot{x} [/mm] + [mm] \frac{k}{m}x=0$ [/mm]

Jetzt vergleicht man mit [mm] $\ddot{x}+\omega^2 [/mm] x = 0$ und liest ab:

[mm] $\omega^2 [/mm] = [mm] \frac{k}{m}$ [/mm]

Jetzt ist man quasi fertig, wenn man sich nur fuer die Schwingungsdauer interessiert, da man ja die Loesungen der allgemienen DGL oben kennt:

$x(t) = [mm] A\cos\omega [/mm] t +  [mm] B\sin\omega [/mm] t = [mm] \tilde{A} \cos(\omega [/mm] t + [mm] \varphi_0)$ [/mm] (man kann die Summe aus [mm] $\sin$ [/mm] und [mm] $\cos$ [/mm] immer so umschreiben, dass man nur einen [mm] $\cos$ [/mm] hat mit entsprechender Phase).

D.h. an der Loesung sehen wir, dass [mm] $\omega$ [/mm] die Kreisfrequenz ist.

Nun zu deinem Fall:

[mm] $J=ml^2$ [/mm] passt soweit. Rechts sollte aber sowas stehen wie [mm] $-gl\sin\varphi$, [/mm] weil man ja [mm] $\vec{r}\times\vec{F}$ [/mm] berechnen muss, wo noch die Laenge des Pendels ins Spiel kommt.

Also lautet die DGL:

[mm] $ml&2\ddot{\varphi} [/mm] + mgl [mm] \varphi [/mm] = 0$

Jetzt kann man das in die Form

[mm] $\ddot{\varphi} [/mm] + [mm] \omega^2 \varphi [/mm] = 0$

bringen, und damit die Kreisfrequenz [mm] $\omega$ [/mm] bestimmen.

Das ist dann der Weg, wo man versucht, die Schwingungsdauer aus der Differentialgleichung zu extrahieren, ohne sie exakt zu loesen.

Ist es dir nun klarer?

LG

Kroni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]