matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigeshauptachsentransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - hauptachsentransformation
hauptachsentransformation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hauptachsentransformation: drehacchse bestimmen
Status: (Frage) beantwortet Status 
Datum: 17:55 Sa 04.07.2009
Autor: domerich

Aufgabe
drehachse bestimmen

ich habe mir schon die eigenvektoren ausgerechnet:
r(0,1,0)
r(1,0,1)
r(1,0,-1)

daraus soll ich nun die drehmatrix erstmal berechnen.

ich weiß, dass die spalten vektoren den betrag 1 haben sollen

daher habe ich r mit 2 und  [mm] \wurzel{2} [/mm]
gibt es ein verfahren mit dem man gut auf das richtige r und andere parameter kommt? vor der matrix steht einhalb

dann soll ich ja den EV zu [mm] \lambda=1 [/mm] bilden

meine matrix ist also

[mm] \bruch{1}{2} \pmat{ 0&\wurzel{2}&\wurzel{2}\\ 2&0&0\\ 0 &\wurzel{2}& -\wurzel{2} } [/mm]

muss ich da die einhalb erst reinmultiplizieren? ich kriege einfach den EV nicht raus. wie rechnet man hier geschickt?

        
Bezug
hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Sa 04.07.2009
Autor: MathePower

Hallo domerich,



> drehachse bestimmen
>  ich habe mir schon die eigenvektoren ausgerechnet:
>  r(0,1,0)
>  r(1,0,1)
>  r(1,0,-1)
>  
> daraus soll ich nun die drehmatrix erstmal berechnen.
>  
> ich weiß, dass die spalten vektoren den betrag 1 haben
> sollen
>  
> daher habe ich r mit 2 und  [mm]\wurzel{2}[/mm]
>  gibt es ein verfahren mit dem man gut auf das richtige r
> und andere parameter kommt? vor der matrix steht einhalb


Siehe hier: []Drehachse und Drehwinkel

>  
> dann soll ich ja den EV zu [mm]\lambda=1[/mm] bilden
>
> meine matrix ist also
>  
> [mm]\bruch{1}{2} \pmat{ 0&\wurzel{2}&\wurzel{2}\\ 2&0&0\\ 0 &\wurzel{2}& -\wurzel{2} }[/mm]
>  
> muss ich da die einhalb erst reinmultiplizieren? ich kriege
> einfach den EV nicht raus. wie rechnet man hier geschickt?


Nun, multipliziere jeden Eintrag der Matrix mit dem Faktor [mm]\bruch{1}{2}[/mm].


Gruß
MathePower

Bezug
                
Bezug
hauptachsentransformation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:14 Sa 04.07.2009
Autor: domerich

ich komme nicht weiter, ich möchte auf die stufen form bringen:
hoffe das stimmt soweit

(1): -x + [mm] \wurzel{2}y [/mm] + [mm] \wurzel{2} [/mm] z=0
(2)  [mm] (\wurzel{2}-1)y [/mm] + [mm] \wurzel{2}z=0 [/mm]
(3)  [mm] \wurzel{2}y [/mm] - [mm] (\wurzel{2}-1) [/mm] z=0

wie tue ich 3 mithilfe von 2 reduzieren?

es klappt garnicht.

außerdem: ich habe gehört bei quadratischen gleichungssystemen darf man, wenn man sie durch eine Matrix darstellt, die Werte auf der Hauptdiagonalen verteilen und noch anderes, wo stehen die gesetze geschrieben?

Bezug
                        
Bezug
hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Sa 04.07.2009
Autor: MathePower

Hallo domerich,

> ich komme nicht weiter, ich möchte auf die stufen form
> bringen:
>  hoffe das stimmt soweit
>  
> (1): -x + [mm]\wurzel{2}y[/mm] + [mm]\wurzel{2}[/mm] z=0
>  (2)  [mm](\wurzel{2}-1)y[/mm] + [mm]\wurzel{2}z=0[/mm]
>  (3)  [mm]\wurzel{2}y[/mm] - [mm](\wurzel{2}-1)[/mm] z=0
>  
> wie tue ich 3 mithilfe von 2 reduzieren?
>  
> es klappt garnicht.
>  


Zu lösen hast Du doch:

[mm]\left( \ \bruch{1}{2} \pmat{ 0&\wurzel{2}&\wurzel{2}\\ 2&0&0\\ 0 &\wurzel{2}& -\wurzel{2} } - \pmat{1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1} \ \right)*\pmat{x \\ y \\ z}=\pmat{0 \\ 0 \\ 0}[/mm]


> außerdem: ich habe gehört bei quadratischen
> gleichungssystemen darf man, wenn man sie durch eine Matrix
> darstellt, die Werte auf der Hauptdiagonalen verteilen und
> noch anderes, wo stehen die gesetze geschrieben?


Gruß
MathePower

Bezug
                        
Bezug
hauptachsentransformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 06.07.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]