matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesharmonische reihe divergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - harmonische reihe divergenz
harmonische reihe divergenz < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

harmonische reihe divergenz: Aufgabe, Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:44 Di 09.04.2013
Autor: MeineKekse

Aufgabe
Vergleichen sie die harmonische serie mit der Funktion 1/x und zeigen sie das gilt N < log(n) + 1, mit N=1+1/2+1/3+...+1/n.

Also meine Idee war jetzt die harmonische reihe mit dem Integral von 1 bis n+1 zu vergleichen. Das Ergebnis wäre dann N > ln(n+1) und entspricht somit ja nicht der Lösung der Aufgabe. Dann habe ich folgendes gefunden: []http://www.mathi.uni-heidelberg.de/~thaeter/surprises/euler.pdf

Mit Hilfe der Zusammenhänge die dort gezeigt werden, kann ich zeigen, dass N < log(n) +1. Stuzig bin ich aber da unter 2. Herleitung der Euler-Mascheroni-Konstante unter dem Abschnitt Beweis steht, dass log(x) die Stammfunktion von 1/x sei, ich dachte doch die Stammfunktion sein ln(x).

Mich würde intressieren inweiweit das stimmt oder inwieweit man die Aufgabe anderweitig lösen kann?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
harmonische reihe divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Di 09.04.2013
Autor: reverend

Hallo MeineKekse, [willkommenmr]

> Vergleichen sie die harmonische serie mit der Funktion 1/x
> und zeigen sie das gilt N < log(n) + 1, mit
> N=1+1/2+1/3+...+1/n.
> Also meine Idee war jetzt die harmonische reihe mit dem
> Integral von 1 bis n+1 zu vergleichen.

Kein guter Ansatz. Da nimmst Du ja eine Riemann-Obersumme zur Hand.

> Das Ergebnis wäre
> dann N > ln(n+1)

Klar, damit kannst Du ja auch nur zeigen, dass N größer als irgendetwas ist.

Forme also lieber um und zeige [mm] N-1<\log{(n)} [/mm] mittels einer Untersumme. ;-)

> und entspricht somit ja nicht der Lösung
> der Aufgabe. Dann habe ich folgendes gefunden:
> []http://www.mathi.uni-heidelberg.de/~thaeter/surprises/euler.pdf

>

> Mit Hilfe der Zusammenhänge die dort gezeigt werden, kann
> ich zeigen, dass N < log(n) +1.

Schön, dann bist Du ja fertig.

> Stuzig bin ich aber da
> unter 2. Herleitung der Euler-Mascheroni-Konstante unter
> dem Abschnitt Beweis steht, dass log(x) die Stammfunktion
> von 1/x sei, ich dachte doch die Stammfunktion sein ln(x).

Du hast vollkommen Recht.
Oft wird [mm] \log{(x)} [/mm] als Schreibweise für den natürlichen Logarithmus genommen, das führt m.E. leicht zu Verwirrungen, ist aber eben ziemlich gebräuchlich. Der dekadische Logarithmus wird dann meist als [mm] \lg{(x)} [/mm] notiert, oder mit Angabe der Basis [mm] \log_{10}{(x)}. [/mm]

> Mich würde intressieren inweiweit das stimmt oder
> inwieweit man die Aufgabe anderweitig lösen kann?

Alles ok. Folge meinem Tipp oben...

Grüße
reverend

Bezug
                
Bezug
harmonische reihe divergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Di 09.04.2013
Autor: MeineKekse

Vielen Dank erstmal!

> das führt m.E. leicht zu Verwirrungen

Stimmt!

> Forme also lieber um und zeige N-1< log(n) mittels einer Untersumme.


bei dir entspricht jetzt log(n) auch ln(n) oder?

Bezug
                        
Bezug
harmonische reihe divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 Di 09.04.2013
Autor: reverend

Hallo nochmal,

> > das führt m.E. leicht zu Verwirrungen
> Stimmt!

>

> > Forme also lieber um und zeige N-1< log(n) mittels einer
> Untersumme.

>

> bei dir entspricht jetzt log(n) auch ln(n) oder?

Klar. Ich bin einfach bei der Terminologie der Aufgabe geblieben.

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]