halbeinfache gruppenringe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei G eine zyklische Gruppe der Ordnung n und K der Körper [mm] \IC [/mm] bzw. [mm] \IQ(\alpha), [/mm] wobei [mm] \alpha [/mm] hier die n-te Einheitswurzel bezeichnet.
Zeige:
KG [mm] \cong K[x]/(x^{n}-1) [/mm] |
Hallo Leute,
mir ist es nicht möglich die obige Isomorphie einzusehen. Es wird sicherlich etwas damit zu tun haben, dass G als zyklische Gruppe der Ordnung n isomorph zu der von [mm] \alpha [/mm] erzeugten Gruppe ist und diese Elemente gerade die Nullstellen von [mm] (x^{n}-1) [/mm] sind. Ich weiß leider nur nicht wie man dies hier benutzen soll. Kennt jemand dafür einen Satz oder weiß mir anders zu helfen?
Wäre super.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:04 Fr 03.10.2008 | Autor: | andreas |
hi
vermutlich kommst du mit der anwendung des homomorphiesatzes auf $K[x] [mm] \longrightarrow [/mm] KG; [mm] \; [/mm] f [mm] \longmapsto [/mm] f(t)$ weiter, wobei $t$ ein erzeuger der zyklischen gruppe sei.
grüße
andreas
|
|
|
|
|
ohja, dass hilft wirklich weiter, allerdings scheitere ich noch am kern dieser abbildung. das alle elemente von [mm] K[x](x^{n}-1) [/mm] im kern liegen sehe ich ein, aber wieso ist nicht K[x]f, wobei f das definierende minimalpolynom der n-ten einheitswurzel ist, gleich dem kern?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:18 Fr 03.10.2008 | Autor: | andreas |
hi
dass das minimalpolynom der $n$-ten einheitswurzeln (ich vermute du meinst das minimalpolynom über [mm] $\mathbb{Q}$) [/mm] nicht den kern erzeugen kann, sieht man schon für $n = 2$: das minimalpolynom der $2$-ten einheitswurzel ist $X + 1$, allerdings ist $1 + t [mm] \not= [/mm] 0$ in [mm] $KC_2$ [/mm] für [mm] $C_2 [/mm] = [mm] \left< t \right>$. [/mm] in $KG$ gelten eben keine weiteren nicht trivialen relationen, außer eben [mm] $t^n [/mm] = 1$ (betrachte die präsentation der zyklischen gruppen).
noch ein wort zu der minimalpolynom frage: die minimalpolynome der $n$-ten einheitswurzeln über den von dir genannetn körpern sind nicht sonderlich interessant, da die entsprechenden einheitswurzel schon in den körpern enthalten sind.
grüße
andreas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:31 Fr 03.10.2008 | Autor: | ichbinsnun |
ach klar,
vielen dank
|
|
|
|