matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationh-Methode
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - h-Methode
h-Methode < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

h-Methode: Idee, Tipp
Status: (Frage) beantwortet Status 
Datum: 15:51 Di 15.05.2012
Autor: al3pou

Aufgabe
Leite y(t) = [mm] s_{0}*cos(\wurzel{\bruch{D}{m}}*t) [/mm] mit der h-Methode ab.


Hallo zusammen,

also eigentlich dürfte es ja kein Problem sein, aber ich komme
irgendwie nicht wirklich drauf. Ich gehe so vor:

  c = [mm] \wurzel{\bruch{D}{m}} [/mm]


  [mm] \limes_{h\rightarrow 0} [/mm] = [mm] \bruch{s_{0}cos(ct + ch) - s_{0}cos(ct)}{h} [/mm]

  [mm] \limes_{h\rightarrow 0} [/mm] = [mm] \bruch{s_{0}(cos(ct)cos(ch)-sin(ct)sin(ch)) - s_{0}cos(ct)}{h} [/mm]

  [mm] \limes_{h\rightarrow 0} [/mm] = [mm] \bruch{s_{0}cos(ct)(cos(ch)-1) - s_{0}sin(ct)sin(ch)}{h} [/mm]

mit  [mm] \limes_{h\rightarrow 0} \bruch{s_{0}cos(ct)(cos(ch)-1)}{h} [/mm] = 0

     [mm] \limes_{h\rightarrow 0} [/mm] - [mm] \bruch{s_{0}sin(ct)sin(ch)}{h} [/mm] = - [mm] s_{0}sin(ct) [/mm]

Damit folgt:

   [mm] \bruch{dy(t)}{dt} [/mm] = [mm] -s_{0}sin(ct) [/mm]

Das ist aber falsch, weil mir noch der Faktor c fehlt und
ich nicht weiß, wie ich den aus der h-Methode bekommen
kann. Ist das so überhaupt Ansatzweise richtig?

Gruß
al3pou

        
Bezug
h-Methode: korrekte Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 Di 15.05.2012
Autor: Roadrunner

Hallo al3pou!


Könntest Du uns vielleicht die korrekte Aufgabenstellung verraten, da Deine angegebene Funktion gar kein $t_$ enthält?
Damit wäre die Ableitung nämlich = 0.


Gruß vom
Roadrunner

Bezug
                
Bezug
h-Methode: Korrekte Funktion
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:09 Di 15.05.2012
Autor: al3pou

Oh, mein Fehler. Habe ich in der Eile wohl vergessen.

Also die korrekte Funktion lautet

   y(t) = [mm] s_{0} [/mm] * cos [mm] (\wurzel{\bruch{D}{m}}*t) [/mm]

Bezug
        
Bezug
h-Methode: Korrektur
Status: (Antwort) fertig Status 
Datum: 16:18 Di 15.05.2012
Autor: Roadrunner

Hallo al3pou!


Prinzipiell ist Deine Vorgehensweise okay. Jedoch machst Du einen Fehler bei der Grenzwertbetrachtung.

Es gilt:  [mm] $\limes_{h\rightarrow 0}\bruch{\sin(c*h)}{h} [/mm] \ = \ [mm] \limes_{h\rightarrow 0}\bruch{c*\sin(c*h)}{c*h} [/mm] \ = \ [mm] c*\limes_{h\rightarrow 0}\bruch{\sin(c*h)}{c*h} [/mm] \ = \ c*1 \ = \ c \ [mm] \not= [/mm] \ 1$


Gruß vom
Roadrunner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]