matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnung"h-Methode"
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - "h-Methode"
"h-Methode" < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"h-Methode": Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:03 Mo 22.05.2006
Autor: nina13

Aufgabe
Geben Sie den Differenzenquotienten m(h) im Intervall [1; 1+h] an.

[mm] f(x)=x^2-4x [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Ich muss diese Aufgabe ja mit Hilfe der sogenanten "h-Methode" lösen. Die Formel dazu ist:

m(h)= [mm] \underline{f(x_{0}+h)-f(x_{0})} [/mm]
                               h

Ich bekomme es einfach nicht hin, die Werte richtig einzusetzen, kann mir jemand helfen?

        
Bezug
"h-Methode": erste Schritte
Status: (Antwort) fertig Status 
Datum: 16:07 Mo 22.05.2006
Autor: Roadrunner

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Nina!


Dann zeige ich Dir mal die ersten Schritte ... und Du machst dann weiter?


$m(1) \ = \ f'(1) \ := \ \limes_{h\rightarrow 0}\bruch{f(1+h)-f(1)}{h} \ = \ \limes_{h\rightarrow 0}\bruch{\left[\left(1+h)^2-4*(1+h)\right]-\left[1^2-4*1\right]}{h} \ = \ \limes_{h\rightarrow 0}\bruch{\left[1^2+2h+h^2-4-4h\right]-\left[-3\right]}{h} \ = \ \limes_{h\rightarrow 0}\bruch{1-2h+h^2-4+3}{h} \ = \ ...$


Gruß vom
Roadrunner


Bezug
                
Bezug
"h-Methode": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Mo 22.05.2006
Autor: nina13

also, ich hab das jetzt mal weitergerechnet, aber ich glaube das ist irgendwie falsch:

nochmal von vorne:

m(h) = f(1+h)-f(1)/h = [mm] [(1+h)^2-4*(1+h)]-[1^2-4*1] [/mm]
                                     /h

[mm] =[1^2+2h+h^2-4-4h]-[-3] [/mm]
                h
[mm] =1-2h+h^2-4+3 [/mm]
           h
[mm] =-3-2h+h^2+3 [/mm]
            h
[mm] =-2h+h^2 [/mm]
        h
=-2h+h
=-1h

Bezug
                        
Bezug
"h-Methode": letzter Schritt falsch
Status: (Antwort) fertig Status 
Datum: 16:37 Mo 22.05.2006
Autor: Roadrunner

Hallo Nina!


Bis auf den vorletzten Schritt machst Du alles richtig! [ok]


Aber bei [mm] $\limes_{h\rightarrow 0}\bruch{-2h+h^2}{h}$ [/mm] musst Du folgendermaßen vorgehen:


[mm] $\limes_{h\rightarrow 0}\bruch{-2h+h^2}{h} [/mm] \ = \ [mm] \limes_{h\rightarrow 0}\left(\bruch{-2h}{h}+\bruch{h^2}{h}\right) [/mm] \ = \ [mm] \limes_{h\rightarrow 0}\left(-2+h\right) [/mm] \ = \ ...$

Wie lautet also Dein Ergebnis?


Gruß vom
Roadrunner


Bezug
                                
Bezug
"h-Methode": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Mo 22.05.2006
Autor: nina13

= h-2

müsste ja jetzt stimmen ;)

Irgendwie ist das ganze sehr komplex. Ich hab vor Allem Probleme mit dem Einsetzen der Werte. Außerdem erkenne ich nie Binomis und so. Aber ihr habt mir hier echt geholfen! Seid super!

Bezug
                                        
Bezug
"h-Methode": Ergebnis
Status: (Antwort) fertig Status 
Datum: 16:47 Mo 22.05.2006
Autor: Roadrunner

Hallo Nina!


> = h-2

Das ist aber nicht das Ergebnis! Du musst ja einen festen Zahlenwert erhalten, indem Du die Grenzwertbetrachtung [mm] $h\rightarrow [/mm] 0$ durchführst.

Also, was erhältst Du, wenn Du hier $h \ = \ 0$ einsetzt?


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]