matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesgruppentheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - gruppentheorie
gruppentheorie < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gruppentheorie: neutrales element
Status: (Frage) beantwortet Status 
Datum: 18:20 Sa 20.11.2010
Autor: mathetuV

sei [mm] G:=\{x \in \IR: 0<=x<1 \} [/mm] und [mm] H:=\{(x,y)\in \IR^{2}\} [/mm] ich soll zeigen dass [mm] (G,\oplus) [/mm] eine gruppe ist mit folgender verknüpfung:

[mm] x\oplus y:=\begin{cases} x+y, & \mbox{für } x+y<1\mbox{ } \\x+y-1, & \mbox{für } x+y\ge 1 \mbox{ } \end{cases} [/mm]

was ist das neutales und inverse element?

0 kann das neutrale element ja nicht sein oder?

        
Bezug
gruppentheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Sa 20.11.2010
Autor: angela.h.b.


> sei [mm]G:=\{x \in \IR: 0<=x<1 \}[/mm] und [mm]H:=\{(x,y)\in \IR^{2}\}[/mm]
> ich soll zeigen dass [mm](G,\oplus)[/mm] eine gruppe ist mit
> folgender verknüpfung:
>  
> [mm]x\oplus y:=\begin{cases} x+y, & \mbox{für } x+y<0\mbox{ } \\ x+y-1, & \mbox{für } x+y\ge 1 \mbox{ } \end{cases}[/mm]
>  
> was ist das neutales und inverse element?
>  
> 0 kann das neutrale element ja nicht sein oder?

Hallo,

warum nicht?
Was hast Du Dir überlegt?

Gruß v. Angela


Bezug
                
Bezug
gruppentheorie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Sa 20.11.2010
Autor: mathetuV

null habe ich mit schon übelegt aber als ich über das inverse elemnt nachgedachte habe bin ich durch einnader gekommen, also wenn z.b x1+0=x2, dann muss doch das x2 negativ sein oder, aber die menge G lääst keine negativen elmente zu

danke für deine schnelle antwort,

oben hat du hingecshrieben x+y <0 die aufgabenstellung hei0t aber, x+y<1.
und der zweite teil stimmt, kannst du mir da helfen wenn ich falsch denke

Bezug
                        
Bezug
gruppentheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Sa 20.11.2010
Autor: mathetuV

kann mir da jemand helfen?

Bezug
                        
Bezug
gruppentheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Sa 20.11.2010
Autor: jumape

0 ist das neutrale Element,
das inverse zu x ist dann 1-x, denn dann ist x+y=x+(1-x)=1 [mm] \ge [/mm] 1
also [mm] x\oplusy=x+(1-x)-1=0 [/mm]

Ist ein bischen tricky, aber probiers aus und du wirst es sehen.

schönes wochenende noch
jumape

Bezug
                                
Bezug
gruppentheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 Sa 20.11.2010
Autor: mathetuV

vielen dank für deine hilfe und dir auch ein schönes wochenende

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]