matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Grenzwertegrenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - grenzwerte
grenzwerte < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwerte: aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:23 Di 22.11.2011
Autor: ionenangrif

Aufgabe
bestimmen sie den grenz wert

[mm] \limes_{x \to \infty} [/mm]   sin(2x)/sin(x)

hier habe ich für [mm] \limes_{n \to \infty} [/mm] dann eingesetzt

sin(2*(0+1/n))   /   sin(0+ 1/n )

für mich wäre das dann einfach 0 durch 0

allerdings soll 2 rauskommen : (

        
Bezug
grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Di 22.11.2011
Autor: kamaleonti

Hallo,
> bestimmen sie den grenz wert
>  
> [mm]\limes_{x \to \infty}[/mm]   sin(2x)/sin(x)
>  hier habe ich für [mm]\limes_{n \to \infty}[/mm] dann eingesetzt
>  
> sin(2*(0+1/n))   /   sin(0+ 1/n )

?? 1/n ist doch eine Nullfolge!

>  
> für mich wäre das dann einfach 0 durch 0
>  
> allerdings soll 2 rauskommen : (

Das wäre aber ein gewaltiges Mysterium. Es gilt

     [mm] \sin(2x)=2\sin(x)\cos(x) [/mm] nach Additionstheorem,

aber der Grenzwert von [mm] \cos(x) [/mm] für [mm] x\to\infty [/mm] existiert nicht!

LG


Bezug
                
Bezug
grenzwerte: aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:48 Di 22.11.2011
Autor: ionenangrif

aber selbst mit additionstheorem kommt für mich null raus...

ich weiß auch ehrlich gesagt nicht so genau wie man grenz werte berechnet,

ich habe einfach statt x läuft gegen unendlich 0+1/n eingesetzt

bin etwas verwirrt

Bezug
                        
Bezug
grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Di 22.11.2011
Autor: Steffi21

Hallo

[mm] \limes_{x\rightarrow\infty}\bruch{sin(2x)}{sin(x)} [/mm]

[mm] =\limes_{x\rightarrow\infty}\bruch{2*sin(x)*cos(x)}{sin(x)} [/mm]

[mm] =\limes_{x\rightarrow\infty}2*cos(x) [/mm]

jetzt überlege, wie sieht die Funktion f(x)=cos(x) aus, der Grenzwert existiert nicht

Steffi

Bezug
        
Bezug
grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 Mi 23.11.2011
Autor: fred97

Ich vermute , dass es um folgenden Grenzwert geht:

[mm] \limes_{x\rightarrow 0}\bruch{sin(2x)}{sin(x)}. [/mm]

Wenn ja, so ist Dir vielleicht mit folgendem geholfen:

              [mm] \bruch{sin(2x)}{sin(x)}=2*\bruch{sin(2x)}{2x}*\bruch{x}{sin(x)}. [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]