matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Grenzwertegrenzwert bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - grenzwert bestimmen
grenzwert bestimmen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwert bestimmen: wie, hier?
Status: (Frage) beantwortet Status 
Datum: 19:30 Mi 17.02.2010
Autor: lalalove


        
Bezug
grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Mi 17.02.2010
Autor: leduart

Hallo
richtig, du musst die Klammern auflösen. dann ists wie immer.
du kannst aber auch im nenner erst [mm] n^2 [/mm] ausklammern und dann hofentlich sehen, dass man kürzen kann. dann mit dem vereinfachten Bruch weitermachen.
(Du wirst mit unserer Hilfe zu unselbständig, die Klammern aufzulösen ist doch kein sehr weit hergeholter Rat?)
Gruss leduart

Bezug
                
Bezug
grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Mi 17.02.2010
Autor: lalalove


> Hallo!
>  
> Wie bestimme ich den Grenzwert bei der Aufgabe?
>  Mit [mm]\bruch{1}{n^{3}}[/mm] erweitern?
>  
> [mm]\limes_{n\rightarrow\infty}\bruch{(n-1)*(2n+1)^{2}}{n^{2}-n^{3}}=\limes_{n\rightarrow\infty}\bruch{\bruch{(n-1)}{n^{3}}*\bruch{(2n+1)^{2}}{n^{3}}}{\bruch{n^{2}}{n^{3}}-1}[/mm]
>  

also dann:

[mm] \limes_{n\rightarrow\infty}\bruch{\bruch{(n-1)}{n^{3}}*\bruch{(2n+1)^{2}}{n^{3}}}{\bruch{n^{2}}{n^{3}}-1}[/mm] [/mm]
= [mm] \limes_{n\rightarrow\infty}\bruch{\bruch{(n-1)}{n^{3}}*\bruch{(2n+1)^{2}}{n^{3}}}{n^{2}*(\bruch{1}{n^{3}}-\bruch{1}{n^2})} [/mm]

So richtig ausgeklammert?

Der erste Bruch oben kurzt sich dann mit der Klammer weg?

Bezug
                        
Bezug
grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Mi 17.02.2010
Autor: Steffi21

Hallo,

leider hast du nicht korrekt ausgeklammert

[mm] \limes_{n\rightarrow\infty}\bruch{(n-1)*(2n+1)^{2}}{n^{2}-n^{3}} [/mm]

im Nenner [mm] n^{2} [/mm] ausklammern

[mm] \limes_{n\rightarrow\infty}\bruch{(n-1)*(2n+1)^{2}}{n^{2}(1-n)} [/mm]

jetzt ist (n-1)=-1*(-n+1)=-1*(1-n)

nun (1-n) kürzen,

Steffi





Bezug
                        
Bezug
grenzwert bestimmen: total falsch
Status: (Antwort) fertig Status 
Datum: 09:05 Do 18.02.2010
Autor: Loddar

Hallo lalalove!



> [mm]\limes_{n\rightarrow\infty}\bruch{\bruch{(n-1)}{n^{3}}*\bruch{(2n+1)^{2}}{n^{3}}}{\bruch{n^{2}}{n^{3}}-1}[/mm][/mm]
>  =
> [mm]\limes_{n\rightarrow\infty}\bruch{\bruch{(n-1)}{n^{3}}*\bruch{(2n+1)^{2}}{n^{3}}}{n^{2}*(\bruch{1}{n^{3}}-\bruch{1}{n^2})}[/mm]
>  
> So richtig ausgeklammert?

Nein, überhaupt nicht!

1. Im Nenner klammerst Du nur [mm] $n^2$ [/mm] und nicht [mm] $n^3$ [/mm] aus.

2. Auch das Ausklammern an sich ist falsch. Mache mal die Probe und multipliziere wieder aus.

3. Was machst Du da im Zähler?


Gruß
Loddar


Bezug
        
Bezug
grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:25 Do 18.02.2010
Autor: abakus


> Hallo lalalove!
>  
>
>
> >
> [mm]\limes_{n\rightarrow\infty}\bruch{\bruch{(n-1)}{n^{3}}*\bruch{(2n+1)^{2}}{n^{3}}}{\bruch{n^{2}}{n^{3}}-1}[/mm][/mm]
>  >  =
> >
> [mm]\limes_{n\rightarrow\infty}\bruch{\bruch{(n-1)}{n^{3}}*\bruch{(2n+1)^{2}}{n^{3}}}{n^{2}*(\bruch{1}{n^{3}}-\bruch{1}{n^2})}[/mm]
>  >  
> > So richtig ausgeklammert?
>  
> Nein, überhaupt nicht!
>  
> 1. Im Nenner klammerst Du nur [mm]n^2[/mm] und nicht [mm]n^3[/mm] aus.
>  
> 2. Auch das Ausklammern an sich ist falsch. Mache mal die
> Probe und multipliziere wieder aus.
>  
> 3. Was machst Du da im Zähler?
>  
>
> Gruß
>  Loddar
>  

Hallo Lalalove,
ich will keinen der bisherigen Tipps in Frage stellen, aber die gehen teilweise aus, dass du irgendeine Besonderheit "siehst", die zu einer cleveren Vereinfachung des Terms führt.
Lass doch erst mal das Ausklammern und multipliziere den Zähler komplett aus. Das macht zwar etwas Arbeit, bringt den Term aber auf eine überschaubare Form.
Nach dem Ausmultiplizieren ist dein Zähler:
[mm] 4x^3 [/mm] plus ein paar [mm] x^2 [/mm] plus einige x plus eine Zahl.
JETZT [mm] x^3 [/mm] ausklammern und Grenzwert bilden...
Gruß Abakus


Bezug
                
Bezug
grenzwert bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:47 Do 18.02.2010
Autor: gfm

Ja, und eigentlich brauchst Du auch nur die führenden Potenzen im Zähler und Nenner zu bestimmen...also [mm] 4n^3 [/mm] im Zähler und [mm] -n^3=(-1)n^3 [/mm] im Nenner, macht dann 4/(-1)=-4 für den Grenzwert.

LG

gfm



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]