matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Eigenwertegrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - grenzwert
grenzwert < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 So 12.09.2010
Autor: vivo

Hallo,

gegeben sei eine Matrix $A$ deren Eigenwerte betragmäßig kleiner gleich 1 sind. Dann gilt folgende Aussage:

$$ [mm] (I_d [/mm] +A + [mm] \cdots [/mm] + [mm] A^j) [/mm] ~ [mm] \overset{j \to \infty}{\to} [/mm] ~ [mm] (I_d [/mm] - [mm] A)^{-1} [/mm] $$

hat jemand ne begründung?

Vielen Dank

        
Bezug
grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 So 12.09.2010
Autor: rainerS

Hallo!

> gegeben sei eine Matrix [mm]A[/mm] deren Eigenwerte betragmäßig
> kleiner gleich 1 sind. Dann gilt folgende Aussage:
>  
> [mm](I_d +A + \cdots + A^j) ~ \overset{j \to \infty}{\longrightarrow} ~ (I_d - A)^{-1}[/mm]
>  
> hat jemand ne begründung?

Überlege zunächst, was die Eigenwerte von [mm] $A^j$ [/mm] sind wie sie sich für [mm] $j\to \infty$ [/mm] verhalten. Was bedeutet das für [mm] $A^j$ [/mm] ?

Dann multipliziere beide Seiten mit [mm] $(I_d [/mm] - A)$ . Was steht da?

Viele Grüße
   Rainer

Bezug
        
Bezug
grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Mo 13.09.2010
Autor: fred97

Sei ||*|| irgend eine Norm auf dem reellen (oder komplexen) Vektorraum V aller nxn - Matrizen.

Aus der Vor. über die Eigenwerte folgt, dass der Grenzwert

          [mm] $\limes_{n\rightarrow\infty}||A^n||^{1/n}$ [/mm] existiert und < 1 ist.

Damit konvergiert die sogenannte Neumannsche Reihe [mm] \summe_{j=0}^{\infty}A^j [/mm] im normierten Raum V. Sei

           $B:=  [mm] \summe_{j=0}^{\infty}A^j [/mm] $

Zeige;

           $B(I-A)= (I-A)B=I$



FRED



Bezug
                
Bezug
grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:18 Mo 13.09.2010
Autor: vivo

super, danke euch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]