matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisgradient vorlesung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - gradient vorlesung
gradient vorlesung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gradient vorlesung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:34 Sa 20.05.2006
Autor: AriR

(frage zuvor nicht gestellt)

Hey leute,

wir haben den gradient einer funtion in der vorlesung folgendermaßen definiert:
[mm] f:U\to\IR [/mm] partiell diffbar

[mm] \nabla [/mm] f(x) := [mm] (\bruch{ \partial f}{ \partial}(x_1),....\bruch{ \partial f}{ \partial}(x_n)) [/mm]

das denke ich habe ich verstanden nur direkt da drunter steht ein beispiel und zwar:

r(x)= eukl. Norm von x

[mm] \nabla r(x)=\bruch{x}{r(x)} [/mm]

irgendwie verstehe ich dsa nicht so ganz.

wenn ich [mm] \nabla [/mm] r(x) gebildet hätte käme da beim mir raus
[mm] (\bruch{x_1}{r(x)},....,\bruch{x_n}{r(x)}) [/mm]

das sieht ja [mm] \bruch{x}{r(x)} [/mm] ein wenig ähnlich, aber das ist gar kein Tupel mehr was wir da in der vorlesung hatten sondern eine reelle zahl oder?

versteht einer von euch das bsp?

danke und gruß Ari

        
Bezug
gradient vorlesung: passt alles
Status: (Antwort) fertig Status 
Datum: 10:02 Sa 20.05.2006
Autor: piet.t

Hallo Ari,

da gibts eigentlich kein Problem, denn Dein Ergebnis und das der Vorlesung stimmen ja überein. Wahrscheinlich verwirrt Die Schreibweise etwas. Wenn wir uns Dein Ergebnis anschauen, dann gilt ja
[mm]\nabla r(x)= (\bruch{x_1}{r(x)},....,\bruch{x_n}{r(x)}) = \bruch{1}{r(x)}(x_1,...x_n) = \bruch{1}{r(x)} \vec{x}[/mm]
...und das könnte man dann evtl. auch kompakter als [mm] \bruch{\vec{x}}{r(x)} [/mm] schreiben, was (bis auf den Pfeil) ja das Ergebnis aus der Vorlesung ist. Durch den Pfeil wird aber vielleicht etwas deutlicher, dass es sich dabei immer noch um ein Tupel handelt....


Gruß

piet

Bezug
                
Bezug
gradient vorlesung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:46 Sa 20.05.2006
Autor: AriR

ach soo...

vielen dank :)

tut mir leid, das sollte ne mitteilung werden, kann ein admin das bitte ändern

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]