matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichengradient berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - gradient berechnen
gradient berechnen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gradient berechnen: skalarfelder
Status: (Frage) beantwortet Status 
Datum: 21:09 Sa 18.10.2008
Autor: lum_pi

hallo,

irgendwie schaff ichs gerade nicht die folgende aufgabe zu lösen, obwohl sie sehr einfach ist...:
man soll nur den gradienten von 2 skalarfeldern berechnen:

1. ∇s1(x) mit s1(x) = f(r) und x = (x, y, z) , r = [mm] \parallel [/mm] x [mm] \parallel [/mm]

2. ∇s2(x) mit s2(x) = f(b · x) und b = (a, b, c) und b · x ist ein  Skalarprodukt

wenn man nun bei 1. r = [mm] \parallel [/mm] x [mm] \parallel [/mm] einsetzt steht da:
[mm] \nabla\ s1(x)=\nabla\ f(r)=\nabla\ f(\wurzel{x^2+y^2+z^2})= [/mm] $ [mm] \pmat{\partial f(\wurzel{x^2+y^2+z^2})/\partial x \\ \partial f(\wurzel{x^2+y^2+z^2})/\partial y \\ \partial f(\wurzel{x^2+y^2+z^2})/\partial z} [/mm] $

aber wie kann ich das nun richtig ableiten?
danke für eure hilfe
gruß
lum_pi




        
Bezug
gradient berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Sa 18.10.2008
Autor: Event_Horizon

Hallo!

Aus der Schule solltest du doch noch die Kettenregel kennen, "innere mal äußere". Das gilt hier auch, also

$ [mm] \pmat{\partial f(\wurzel{x^2+y^2+z^2})/\partial x \\ \partial f(\wurzel{x^2+y^2+z^2})/\partial y \\ \partial f(\wurzel{x^2+y^2+z^2})/\partial z} [/mm] = [mm] \pmat{f'(r)*\partial \wurzel{x^2+y^2+z^2}/\partial x \\ f'(r)*\partial \wurzel{x^2+y^2+z^2}/\partial y \\ f'(r)*\partial \wurzel{x^2+y^2+z^2}/\partial z} [/mm] $



Bezug
                
Bezug
gradient berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 Sa 18.10.2008
Autor: lum_pi

danke für die schnelle antwort.
so hab ichs auch gerade hinbekommen, war mir nur nen bisschen unsicher wegen dem f.
gruß
lum_pi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]