matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationglobales Extrema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - globales Extrema
globales Extrema < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

globales Extrema: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:21 Do 04.05.2006
Autor: Susella

Aufgabe


1. a) Ermitteln Sie die lokalen Extremstellen und Wendestellen der Funktion f zu
f(x) = x/
(1+x²) .
b) Weisen Sie nach, dass die lokalen Extrema auch die globalen Extrema der
Funktion f sind. Untersuchen Sie das Verhalten von f f¨ur große/kleine x.
Skizzieren Sie mit den gewonnenen Erkenntnissen den Graphen von f.



Hallo, ich habe ein kleines Problem mit der mir gestellten Aufgabe.(siehe unten) : Der a-Teil ist klar, ableiten, Extremstellen,Wendepunkt... Aber wie gehe ich am Besten bei dem b-Teil vor ??Sprich wie weise ich nach, dass das lokale Extrema gleichzeitig global ist und wie bearbeite ich den Rest der Aufgabe...

Vielen Dank schon mal im  voraus :)



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
globales Extrema: Hinweise
Status: (Antwort) fertig Status 
Datum: 13:44 Do 04.05.2006
Autor: Roadrunner

Hallo Susella,

[willkommenmr] !!


Für den Nachwies der globalen Extrame kannst Du z.B. folgendermaßen vorgehen.

Der Hochpunkt liegt da bei $H \ [mm] \left( \ 1 \ \left| \ \bruch{1}{2} \ \right)$ . Damit dies nun ein globales Maximum ist, darf für die Ungleichung $f(x) \ > \ y_H \ = \ \bruch{1}{2}$ [b]keine[/b] Lösung existieren. Also "einfach mal" ;-) die Ungleichung $\bruch{x}{1+x^2} \ > \ \bruch{1}{2}$ auflösen. Für die Betrachtung für große und kleine $x_$ ist jeweils eine Grenzwertbetrachtung für $x\rightarrow [/mm] + [mm] \infty$ [/mm] bzw. [mm] $x\rightarrow [/mm] - [mm] \infty$ [/mm] erforderlich.


Klammere dafür mal in Zähler und Nenner die höchste $x_$-Potenz (also: [mm] $x^2$ [/mm] ) aus und kürze das [mm] $x^2$ [/mm] ...


Für den Nachweis der globalen Extrema hätte man auch zunächst diese Grenzbetrachtungen führen und dafür verwenden können.


Gruß vom
Roadrunner


Bezug
                
Bezug
globales Extrema: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:08 Do 04.05.2006
Autor: Susella

Hmm okay, bin jetzt bei der Ungleichung fast fertig aber weißnicht weiter :
x-1/2x² > 1/2  
wie form ich das jetzt am Besten um ??Denkfehler... Müsste es außerdem nicht größer-gleich heißen ???

LG Susi

Bezug
                        
Bezug
globales Extrema: p/q-Formel
Status: (Antwort) fertig Status 
Datum: 14:15 Do 04.05.2006
Autor: Roadrunner

Hallo Susella!


Bringe doch mal alles auf eine Seite der Ungleichung und wende anschließend (wenn die Normalform vorliegt) die MBp/q-Formel an.
Existieren hier Lösungen?


Wenn Du mit der Variante [mm] $\ge$ [/mm] arbeitest, darf natürlich als einzige Lösung der x-Wert unseres Hochpunktes $H_$ herauskommen.


Gruß vom
Roadrunner


Bezug
                                
Bezug
globales Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Do 04.05.2006
Autor: Susella

okay , nach auflösen der p,q-Formel hab ich nun zwei werte : x= 2 und y= 0
D.h. es existiert kein globales Maximum , da die Ungleichung lösbar ist.
Richitg ;)

Gruß

Bezug
                                        
Bezug
globales Extrema: Rechnung?
Status: (Antwort) fertig Status 
Datum: 14:49 Do 04.05.2006
Autor: Roadrunner

Hallo Susella!


> okay , nach auflösen der p,q-Formel hab ich nun zwei werte :
> x= 2 und y= 0

Was hast Du denn hier gerechnet? [aeh]

Ich erhalte lediglich als (doppelte) Lösung: $x \ = \ 1$ . Und eine nach oben geöffnete Parabel ist nur negativ (sprich: unterhalb der x-Achse) für die Werte zwischen den Nullstellen.

Dieser "Bereich" ist in unserem Falle nicht exstent [mm] $\Rightarrow$ [/mm]  Ungleichung niemals erfüllt  [mm] $\Rightarrow$ [/mm]  $H_$ ist globales Maximum.


Analog funktioniert es mit dem Tiefpunkt ...


Gruß vom
Roadrunner


Bezug
        
Bezug
globales Extrema: 2t Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:17 Do 04.05.2006
Autor: Susella

So nun Teil 2 : habe

[mm] \limes_{n\rightarrow\infty} [/mm] x/(1+x²)  =  [mm] \limes_{n\rightarrow\infty} [/mm] (1/x) /  (1/x² +1)  ---> wenn das x² rausgekürzt wird.

So  x--> + unendlich  -->geht gegen 0

x--> - unendlich --> geht auch gegen 0

und nun ??


Bezug
                
Bezug
globales Extrema: Dit war's ... ;-)
Status: (Antwort) fertig Status 
Datum: 14:21 Do 04.05.2006
Autor: Roadrunner

Hallo Susella!


> x--> + unendlich  -->geht gegen 0
> x--> - unendlich --> geht auch gegen 0

[daumenhoch]


> und nun ??

Nix, das war's ... ;-) Das ist das Ergebnis.


Damit kannst Du nun den Graph skizzieren (natürlich auch mit dem Hochpunkt, dem Tiefpunkt und den beiden Wendepunkten).


Gruß vom
Roadrunner


Bezug
                        
Bezug
globales Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:26 Do 04.05.2006
Autor: Susella

Na wunderbar : ) .. War zwar ne schwere Geburt mit mir aber trotzdem vielen Dank für deine Hilfe ^^ .. jetzt muss ich den Quatsch ja nur noch auf Papier bringen +g+
Einen sonnigen Nachmittag dir und lass dein schlaues Köpfchen mal ein bisschen ausqualmen +g+

Liebe Grüße

Bezug
                                
Bezug
globales Extrema: Aber ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:50 Do 04.05.2006
Autor: Roadrunner

Hallo Susella!


> Einen sonnigen Nachmittag dir und lass dein schlaues
> Köpfchen mal ein bisschen ausqualmen +g+

... ich bin doch Nichtraucher ;-) !


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]