matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisglm stetigkeit&eins. Limes
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - glm stetigkeit&eins. Limes
glm stetigkeit&eins. Limes < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

glm stetigkeit&eins. Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:38 Mo 24.04.2006
Autor: Sanshine

Aufgabe
Seien a,b [mm] \in \IR [/mm] a<b und [mm] f\in [/mm]  C(]a,b[).
Beh.: Dann sind äquivalent:
a) f ist gleichmäßig stetig
b) Der einseitige Grenzwert f(a+) existiert
c) Es existiert ein f* [mm] \in [/mm] C([a,b])  mit [mm] f|_{]a,b[}=f [/mm]

Moin.
Ich habe mir gedacht, ich beweise das ganze mit a) [mm] \Rightarrow [/mm] b) [mm] \Rightarrow [/mm] c) [mm] \Rightarrow [/mm] a).
Dachte, das passendste ist hier, für a) [mm] \Rightarrow [/mm] b) das Cauchyfolgenkrit. der glm Stetigkeit zu nehmen. (Jede CF wird von einer glm. stetigen Fuktion in eine CF überführt). So wie das aussieht, könnte das mein Grenzwert werden. Komme allerdings noch nicht ganz mit dem einseitigen GRenzwert klar.
Bei b) [mm] \Rightarrow [/mm] c) dachte ich, dass vll nicht nur der GRenzwert (a+) von f sondern auch (b-) existiert. Und das würde mir doch bei meinem f* helfen, oder?
Und bei der letzten Richtung habe ich mal wieder gar keine Ahnung.

        
Bezug
glm stetigkeit&eins. Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Mo 24.04.2006
Autor: MatthiasKr

Hallo sanshine,

mir kommt aussage b) etwas spanisch vor.... Ich denke, der grenzwert $f(b_-)$ muss genauso existieren. Was wäre sonst zB. mit [mm] $f(x)=\frac{1}{x}$ [/mm] auf $(-1;0)$?

Bei c) => a) kannst du doch benutzen, dass $f^*$ gleichmäßig stetig ist (als stetige funktion auf einem kompaktum).

VG
Matthias

Bezug
        
Bezug
glm stetigkeit&eins. Limes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Mo 24.04.2006
Autor: Sanshine

Vielen Dank erst einmal für die Antwort.
Kam mir eben auch sonderbar vor, dass nur der eine einseitige Grenzwert exisitiert. Antwort bekomme ich dann wohl am mittwoch,
Gruß
San

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]