matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihengliedweise Integration?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - gliedweise Integration?
gliedweise Integration? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gliedweise Integration?: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:03 Fr 20.06.2008
Autor: Surfer

Hallo, wie komme ich denn bei der gliedweisen Integration von:
[mm] f:(-1/4,1/4)\to \IR:x\mapsto\summe_{k=0}^{\infty}(-4)^{k}*x^{k} [/mm]

auf F(x) = [mm] \summe_{k=0}^{\infty}\bruch{(-4)^{k}}{k+1}*x^{k+1} [/mm] + c
= [mm] \summe_{k=1}^{\infty}\bruch{(-4)^{k-1}}{k}* x^{k} [/mm] + c

?
Bitte um eine Vorgehensweise
lg Surfer

        
Bezug
gliedweise Integration?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Fr 20.06.2008
Autor: blascowitz

Guten Tach

Das was da steht ist ja eine Potenzreihe. Und weil das eine Potenzreihe ist, darf man die gliedweise integrieren oder Differenzieren. Die erste Gleichheit ist einfach die Integration von [mm] $x^k$ [/mm] , das Integral davon ist ja bekanntermaßen [mm] \bruch{1}{k+1}x^{k+1}. [/mm] Die zweite Gleichheit folgt aus Indexverschiebung.
Guck dir mal die Summationsgrenzen an. Die $ [mm] \summe_{k=0}^{\infty}\bruch{(-4)^{k}}{k+1}\cdot{}x^{k+1} [/mm] $ fängt ja bei $k=0$  
$ [mm] \summe_{k=1}^{\infty}\bruch{(-4)^{k-1}}{k}\cdot{} x^{k} [/mm] $ fängt bei $k=1$ an. Deshalb muss man die Index um einen runtersetzten, damit die selbe summe rauskommt
Einen schönen Tach

Bezug
                
Bezug
gliedweise Integration?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Fr 20.06.2008
Autor: Surfer

Alles klar, und was ist dann darunter zu verstehen:
Geben Sie f in geschlossener For an?
da muss man auf f(x) = [mm] \bruch{1}{1+4x} [/mm] kommen?

lg Surfer

Bezug
                        
Bezug
gliedweise Integration?: geometrische Reihe
Status: (Antwort) fertig Status 
Datum: 18:32 Fr 20.06.2008
Autor: Loddar

Hallo Surfer!


Forme um:
[mm] $$\summe_{k=0}^{\infty}(-4)^{k}\cdot{}x^{k} [/mm] \ = \ [mm] \summe_{k=0}^{\infty}(-4x)^{k}$$ [/mm]
Nun wende die Formel für die geometrische Reihe an.


Gruß
Loddar


Bezug
                                
Bezug
gliedweise Integration?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Fr 20.06.2008
Autor: Surfer

Was bedeutet dann geschlossene Form? einfach eine Form ohne Grenzen oder?

lg Surfer

Bezug
                                        
Bezug
gliedweise Integration?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Fr 20.06.2008
Autor: leduart

Hallo
ja! ne Summe geht ja immer weiter und weiter und weiter.. also ist sie sicher nicht "geschlossen"
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]