matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizengleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - gleichungssystem
gleichungssystem < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichungssystem: "Frage"
Status: (Frage) beantwortet Status 
Datum: 22:51 Di 20.11.2007
Autor: Dagobert

hallo!

ich hätte ne frage zu foldendem beispiel:

[Dateianhang nicht öffentlich]

zum lösen muss ich Ax=b ja mal auf ne stufenform bringen:

[mm] \pmat{3 & -5 & 2 & -1 \\ -6 & 9 & 3\alpha & 2 \\ 1 & 2\alpha & 1 & \beta} [/mm] --> [mm] z_1 [/mm] mit [mm] z_3 [/mm] vertauschen --> [mm] \pmat{1 & 2\alpha & 1 &\beta\\ -6 & 9 & 3\alpha & 2 \\ 3 & -5 & 2 & -1} [/mm] --> [mm] z_3:z_3-3*z_1 [/mm] --> [mm] \pmat{1 & 2\alpha & 1 & \beta \\ -6 & 9 & 3\alpha & 2 \\ 0 & -5-6\alpha & -1 & -1-9\beta} [/mm] --> [mm] z_2:z_2+6*z_1 [/mm] --> [mm] \pmat{1 & 2\alpha & 1 & \beta \\ 0 & 12\alpha+9 & 3\alpha+6 & 2+6\beta \\ 0 & -5-6\alpha & -1 & -1-9\beta} [/mm]

nur jetzt komm ich irgendwie nicht weiter, weiß nicht wie ich das [mm] -6\alpha-5 [/mm] wegbekomme??!

danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Di 20.11.2007
Autor: schachuzipus

Hallo Dagobert,


> hallo!
>  
> ich hätte ne frage zu foldendem beispiel:
>  
> [Dateianhang nicht öffentlich]
>  
> zum lösen muss ich Ax=b ja mal auf ne stufenform bringen:
>  
> [mm]\pmat{3 & -5 & 2 & -1 \\ -6 & 9 & 3\alpha & 2 \\ 1 & 2\alpha & 1 & \beta}[/mm]
> --> [mm]z_1[/mm] mit [mm]z_3[/mm] vertauschen --> [mm]\pmat{1 & 2\alpha & 1 &\beta\\ -6 & 9 & 3\alpha & 2 \\ 3 & -5 & 2 & -1}[/mm]
> --> [mm]z_3:z_3-3*z_1[/mm] --> [mm]\pmat{1 & 2\alpha & 1 & \beta \\ -6 & 9 & 3\alpha & 2 \\ 0 & -5-6\alpha & -1 & -1-\red{3}\beta}[/mm]

Hier haste dich verschrieben

> --> [mm]z_2:z_2+6*z_1[/mm] --> [mm]\pmat{1 & 2\alpha & 1 & \beta \\ 0 & 12\alpha+9 & 3\alpha+6 & 2+6\beta \\ 0 & -5-6\alpha & -1 & -1-9\beta}[/mm]
>  
> nur jetzt komm ich irgendwie nicht weiter, weiß nicht wie
> ich das [mm]-6\alpha-5[/mm] wegbekomme??!
>  
> danke!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Das gibt wilde Rechnerei.

Wenn du etwas anders anfängst, wird's viel einfacher:


[mm] $\pmat{3 & -5 & 2 &|& -1 \\ -6 & 9 & 3a & |&2 \\ 1 & 2a & 1 & |&b}$ [/mm]

Hier nix tauschen, sondern das 2-fache der 1.Zeile zur 2.Zeile addieren und die 1.Zeile zum (-3)-fachen der 3.Zeile addieren.

Das gibt


[mm] $\pmat{3 & -5 & 2 &|& -1 \\ 0 & -1 & 3a+4 &|& 0 \\ 0 & -6a-5 & -1 & |&-3b-1}$ [/mm]

Hier sieht man besser wie's weitergeht:

Addiere das (-6a-5)-fache der 2. Zeile zur 3.Zeile, das ergibt:


[mm] $\pmat{3 & -5 & 2 &|& -1 \\ 0 & -1 & 3a+4 &|& 0 \\ 0 & 0 & -18a^2-39a-21 & |&-3b-1}\rightarrow \pmat{3 & -5 & 2 &|& -1 \\ 0 & -1 & 3a+4 &|& 0 \\ 0 & 0 & -3(a+1)(6a+7) & |&-3b-1}$ [/mm]


Hier kannst du nun deine Fallunterscheidungen ansetzen...


LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]